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ANNOTATION /4*

Aerospace Vehicles as Objects of Control. Shatalov, A.S.,

Topcheyev, Yu.I. and Kondrat'yev, V.S. Mashinostroyeniye, 1972,
240 pp.

This book examines the dynamic equations of motion of vari-

ous types of aerospace vehicles with two-and three-dimensional
arrangements of the wings and control surfaces and of types with

pivoting wings and gasdynamic controls. The equation systems

are presented for a complete.dynamic scheme that takes account
of the motion of the center of mass, rotation about the center

of mass, structural elasticity, and motions of liquids in tanks.
The equations are linearized to simplify the equation system.

This has made it possible to convert to the transfer functions
and control structural diagrams of the vehicles, so that reci-

procal effects between channels could be taken into account in

lucid presentation.

The dynamic characteristics of the vehicles are presented
for standard input disturbances, which are represented in the

form of Laplace and z-transforms. A matrix form of description
of the vehicle is proposed as a means of taking account of the
nonstationary nature of the controlled object. These character-
istics make it possible to identify the object on the basis of
experimental data.

The book is intended for design engineers engaged in the

design of aerospace-vehicle control systems. It will also be
useful to college graduate and undergraduate students in the
corresponding specialties.

PRECEDING PAGE BLANK NOT FILMED

*Numbers in the margin indicate pagination in the foreign text.
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FOREWORD /5

Control of the flight of an aerospace vehicle consists in

maintaining the desired trajectory of its center of mass and

orientation and stabilization with respect to the center of

mass. These functions are performed by an automatic or semi-

automatic control system in which the aerospace vehicle is the
object of control.

The dynamic characteristics of an aerospace vehicle as a

controlled object depend on a number of parameters: mass, mo-
ments of inertia, aerodynamic coefficients, and so forth.
These parameters are the initial basis for writing the differ-
ential equations that describe the dynamics of the vehicle's
motion or its dynamic characteristics as functions of time. To-

gether with these primary characteristics, there are also so-

called secondary (derived) characteristics, an example of which

is found in the gain and phase frequency characteristics, which

establish relationships between harmonic signals at the output
and input of the aerospace vehicle [4, 5]. In these character-
istics, the angles or angular velocities of deflection of the

controls and the variation of engine thrust are treated as in-

put signals. The output signals are the angle and angular ve-

locity of rotation of the vehicle's axes, g-force, the linear

displacement of the center of mass, and the changes in the al-

titude and direction of flight. All of these signals are pres-
ented in the form of vectors or vector projections. In writing
the dynamic equations of aerospace vehicles, therefore, consid-

erable attention is given to selection of the coordinate system
in which the motion of the vehicles is examined.

The book discusses four types of coordinate systems (earth-

based, body, drag, and semiattached body),'use of which makes it

possible to write systems of dynamic equations of motion for /6

aerospace vehicles under various conditions of use. The result-

ing system: of differential equations is nonlinear; considerable

mathematical difficulty is encountered in its solution or anal-

ysis. To surmount them, the systems of nonlinear differential

equations are linearized with respect to reference trajectories

by the method of small increments, so that the motion of the

vehicle can be resolved into short-period and long-period mo-

tions. If it is assumed that the coefficients of the equation

system vary little in time, and if the "frozen"-coefficient
method is used, this method makes it possible to apply the di-

rect Laplace transform to the equation system and to reduce the

system of differential equations to algebraic equations, with

the result that easily inspected stationary structural diagrams
of the vehicle can be constructed and the dynamics of their mo-

tion analyzed for individual channels on the basis of the

transfer functions tabulated in the present book.

V
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However, reciprocal effects between channels are observed
as a result of the "crossflow" effect at large angles of attack
for cruciform-wing aerospace vehicles, which are symmetrical
about the longitudinal axis. The effect on the dynamics of the
vehicle's 'motion in three dimensions is taken into account by
one of the various possible methods.

So that the characteristics of the stationary object can be
obtained for various inputs, the book presents a compact mathe-
matical description of the standard responses that can be used
for conversion back to the transfer-function coefficients.

Along with stationary objects, nonstationary objects with
variable parameters are also treated in matrix form, and the
conditions under which this representation is necessary are
stated.

Chapters III, IV, and V, Sec. 4 of Chapter II, and Appendix
IV were writen by A.S. Shatalov and Chapters I and II and Ap-
pendixes I, II and III by Yu. I. Topcheyev and V.S. Kondrat'yev.

All comments and suggestions regarding the book should be
sent to "Mashinostroeniye" Press at Moscow, B-66, l-y Basman-
nyy Per., d. 3.
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CHAPTER I /7

TYPES OF AEROSPACE VEHICLES AND THE CONFIGURATIONS
OF THEIR CONTROLS

1.1. AEROSPACE VEHICLE CLASSIFICATION PRINCIPLES

Aerospace vehicles of various classes now have great flight
altitude and speed ranges. The shaded area in Fig. 1.1 indicates

the flightperformance zone of
aerospace vehicles in terms of al-
titudes and speeds (Mach numbers).

too - - - The lower boundary of the zone is /8
characterized by the temperature

75 strength characteristics of both the
Conrollability 3 vehicle itself and its engines. The

upper boundary is determined by the
controllability and flightstability

i 2 potential of the vehicle [30, 31].

limit

All aerospace vehicles can be0 5 10 .1Y 20 25 N
classified into three groups on

Figure 1.1. Maximum Alti- the basis of flight speeds and al-
tude and Speed Perfor- titudes: conventional vehicles,
mance Limits of Aerospace hypersonic vehicles, and vehicles
Vehicles. 1) Airplanes; that fly on circular or ballistic
2) hypersonic aerospace trajectories.
vehicles (ASV); 3) rocket
boosters and space vehi-
cles of various types. At the same time, they can

also be classified on the basis of
the type of controls used. Here

again there are three quite distinct groups: aerospace vehicles
with aerodynamic controls, vehicles with gasdynamic controls,
and vehicles with combination controls (combinations of aerody-
namic and gasdynamic controls).

Airplanes and antiaircraft, air-to-air, and air-to-surface
missiles are usually clasified in the first group.

The second group (vehicles with combination controls) usual-
ly includes hypersonic airplanes, the last stages of antiaircraft
missiles, rocket airplanes, and many other vehicle types. Their
altitude limits range from 30 to 50 km and sometimes even higher
[30].



Airplanes and rockets
with aerodynamic

controls

Hypersonic airplanes and
rocets with combination

controls

Rockets with gasdynamic
controls

Ballistic missiles and
booster rockets with gasdy-

namic controls

Orbiting spacecraft with
combination controls

i Orbiting spacecraft with
gasdynamic controls

Figure 1.2. Unified Aerospace-Vehicle
Classification .Scheme.

Hypersonic airplanes and leng-range winged rockets, rocketboosters, and their last stages can usually be classified asaerospace vehicles of the third group. The lower boundary forthis group of ASV's is approximately 50-80 km. There is no
upper limit [30].

We should note that the above classification of aerospace
vehicles is not quite definitive. Certain foreign antitankdevices fly at low heights and use gasdynamic controls. Short-range ballistic missiles may also have gasdynamic controls only.
Orbiting near-earth space vehicles of the rocket-airplane type
have aerodynamic and gasdynamic controls, etc.

The two aerospace-vehicle classifications that we have con-

2



sidered can be combined into a single system. This unified

classification makes it possible to infer the purpose 
of the

ASV, and the principle embodied in its mode of flight and in /9

the control of the vehicle proper.

Figure 1.2 presents a unified ASV classification 
scheme.

In this classification, each aerospace vehicle falls into 
one

of six classes: airplanes and rockets with aerodynamic con-

trols; hypersonic airplanes and rockets with combined controls; /10

rockets with gasdynamic controls; ballistic missiles and 
rock-

et boosters with gasdynamic controls; orbiting space vehicles

with combination coqtrols; orbiting space vehicles with gas-

dynamic controls.* We shall use this classification in Chap-

ters I and II.

1.2. AIRPLANES AND ROCKETS WITH VARIOUS SCHEMES FOR DEVELOPING

LIFT AND CONTROL MOMENTS

Airplanes-and rockets with aerodynamic controls also 
in-

clude vehicles in which the forces required to develop the 
con-

trolling moments are created by control surfaces. Airplanes

and rockets of this group can be classified into several sub-

groups depending on the positions of the wings 
and the con-

trol surfaces. If the wing is placed toward the bottom of /11

the fuselage, we have a low-wing configuration; if the wing

is at mid-height, we have a mid-wing vehicle, and, finally,

if the wing is at the top of the fuselage, we have a high-

wing type. The wing may be fixed or hinged, as indicated 
in

Fig. 1.3, a,b, and c. In the last case, we say that the air-

plane has a variable-geometry wing. I

a) )

Figure 1.3. Aerodynamic Configurations of Airplanes. a)

With control surfaces in "Canard" configuration; b) with nor-

mal control-surface placement; c) with variable-geometry
wing.

*The last two classes are not considered here, since a separate

book will be devoted to them.



The relative positions of the wings and horizontal tail
surfaces have a strong influence on the layout of an airplane.
When the tail surfaces are placed ahead of the wings, it is
said that the airplane has a "canard" aerodynamic layout (see
Fig. 1.3a). At positive angles of attack a, the airplane is
balanced by deflection of the elevators through a positive an-
gle, i.e, when

be bal (1.1)

If the control surfaces are aft of the wings, the airplane is
said to have the normal configuration (Fig. 1.3b). In this scheme,
the elevators must be deflected through a negative angle to obtain
a positive angle of attack, i.e.,

a )<. (1.2)

If the elevators are placed near the trailing edge of the wing,
the airplane is said to be laid out in a "tailess" configuration.
The balance relation (1.2) is obviously retained in this case.
The vertical tailplane is at the rear of the fuselage in all
configurations. The ailerons of airplanes are situated on the
trailing or lateral edges of its wings and.develop rolling mo-
ments or assist in countering them.

An airplane is made to climb or descend by changing the
elevator deflection angle 6e and, consequently, the amount of
lift.

A rotor deflection 6r results in a flat turn. Aerospace

vehicles having the airplane configuration with two-dimensional
wing arrangement can execute coordinated turns by simultaneous /12
deflections of the ailerons (6a) and elevators (e ).

The lift Y of an airplane with two-dimensional wing ar-
rangement can be varied by varying the fuselage angle of attack
a. Lift is increased simultaneously by a component of the en-
gine's thrust T, i.e.,

Y=P sin (a+e), (1.3)

where e is the engine setting angle on the airplane.

We should note that the sum of the two angles a + e < 200.e -
This indicates a small increase in the lift of the airplane due /13
to the normal component of engine thrust.

4



b)

d)

Figure 1.4. Configurations of Rockets with Aerody-
namic Controls and Various Types of Wings. a)

With two-dimensional wing; b, d) with three-dimen-
sional wing arrangement; c) with annular wing..

Aerodynamically controlled rockets have a wider range of pos-

sible configurations than airplanes, since they make use of vari-

ous wing forms. (airplane configuration) and three-dimensional wing

arrangements (cruciform wings). Diagrams of possible aerodynamic

configurations for rockets with various types of wings are shown

in Fig. 1.4.

Rocket configurations are also classified as normal, "canard,"

and "tailless". depending on the relative positions of the control

surfaces and wings along the body of the rocket. The rocket con-

figurations shown in Fig. 1.4 are normal in regard to the placement

of the control surfaces and wings.

The relative positions of the control surfaces and wings along

the body of a rocket strongly influence its configuration. Several /1

variations are possible here. Figure 1.5 illustrates the placement

of control surfaces and wings at a 450 angle to the axis (the so-

called X-X configuration). In Fig. 1.5b, the wings have the X con-

figuration and the control surfaces the + configuration; this

scheme is usually designated as X-+. Two other schemes are also

5



conceivable: +-+ (Fig. 1.5c)
and+-X (Fig. 1.5b).

Rollerons or spoilers
can be used on rockets to
stabilize them with respect
to the Ox axis. A rolleron

a) b)1
is a heavy rotor that twists
the slipstream at speeds up
to several thousand revolu-
tions perminute. Figure
1.6a shows rollerons at the
wingtips of' a rocket. As
the rocket rolls at angular
velocity wx, a gyroscopic

d) moment appears and causes
the ailerons (see Fig. 1.6a)

Figure 1.5. Diagrams Showing Re- to deflect. The rolling mo-
lative Positions of Control tion of the rocket is coun-
Surfaces and Wings on Cross Sec- tered by this moment. With

tions Through Bodies of Rockets. increasing flight speed of

a) Scheme X-X; b) scheme +X; c) the rocket, the angular
scheme ++; d) scheme X+. velocity of the rotors also

increases, and, accordingly,
so do the aileron deflec-

tions. Figure 1.6 shows spoilers arranged perpendicular to the
flow along the trailing edge of a wing. Spoilers require small
control moments, and this is an advantage of this system, although
excessive drag is created when they are extended into the stream
at a 900 angle. They can therefore be used on rockets designed
for flight at high altitudes.

V ~ V

2 2

a) b)2
b)

Figure 1.6. Diagrams Showing Figure 1.7. General Appearance
Arrangement of Rollerons and of Rocket with Pivoting Wings.
Spoilers on Rocket Wings. a)
For Rollerons; 1) wing; 2)
elevon;. 3) elevon axis; 4) One variety of the
rotor; b)for spoilers: 1) "canard" configuration is thepivoting-wing vehicle. It

acquires its lift by pivoting
6



the wing, and its body is set practically in line with the free
stream. In this configuration, the wings are located at the
center of gravity and also act as control devices, while the non-

moving rear surfaces serve as the vehicle's stabilizer (Fig. 1.7).
The rocket can also be rolled if differential control is provided
for the wings.

Let us write the balance condition for the rocket in the form

M;a +M.8=0, (1.4)

where Ma is the static derivative of the rocket's moment with res-
Z 6

pect to the angle a and Mz is the static derivative of the rocket's

moment with respect to the angle 6. We find from (1.4)

(-L 2 (1.5)

When Ma is negative, the sign of (a/6 )bal is the same as that of

the derivative M6 . This indicates that when the wing is deflected
z

through +6, the body of the vehicle also assumes a positive angle
of attack a.

We should note that the sign of Mz depends on the trim of the

rocket and the dimensions of the stabilizers. Figure 1.7 indicates
the wing lift Yg (applied at the wing aerodynamic center Fg) /16

and the stabilizer lift Yst due to wing downwash (applied at the

stabilizer aerodynamic center Fst). The resultant lift Y as-

sociated with the wing deflection angle is applied at the aero-

dynamic center F0 of the rocket (see Fig. 1.7). If the center

of mass is located at the same point, we have

x7-Xp=0. (1.6)

Here M= 0 and (a/6)ba =

zbal

In this case, the angle of attack of the rocket body is zero at

all control-surface deflection angles 6.

If the center of mass is shifted to a point Y1 forward of the

aerodynamic center FO, i.e.,



Xr-Xp 0' 0, (1.7)

we have M < 0 and (a/6)bal < 0, and the angle of attack of the
rocket body is set at a small negative value. On displacement of
the center of mass to Y2 aft of center, we have

xr- x,0 > (1.8)

and M > 0, so that (a/6) > 0.z bal

In this case, the body will have a small positive angle of attack.

We see from the above that a rocket with a pivoting-wing
configuration responds quickly, since its lift changes immediately
with the pivot angle 6. The small-rocket body angles of attackof this configuration ensure good operating conditions for ramjetengines, preventing flow detachment at the diffuser.

7

a) b)
c)

Figure 1.8. Lift-Developing Schemes for
Rockets with Various Configurations. a)
With Two-dimensional wing; b) with cruci-
form wings; c) with pivoting wings.

Let us compare three schemes for the development of lift forrockets having the same given wing area.- The first rocket, a.flat-winged type, has a lift Y (Fig. 1.8a); the second, withfixed cruciform wings, will also create the resultant lift Y if

each wing has a lift equal to (Fig. 1.8b); the third,

pivoting-wing configuration (Fig. 1.8c) has a resultant lift YJ2.Thus, the lift of pivoting wings in the plane of the bisector is /171.41 times the lift in the planes of fixed wings.

Fixed cruciform wings provide for turning the rocket withoutroll, thus improving its speed of response. For this reason, the

8



three-dimensional wing arrangements are usually used in piloteless
vehicles of the air-to-air and surface-to-air classes, which are
designed for use against aerial targets, where fast response is
necessary [281. Pivoting wings in a three-dimensional arrangement
are used in ramjet-engined air-to-surface vehicles, since this
eliminates flow detachment at the diffuser, an effect associated
with large angles of attack [28].

The demand for increasedaltitude capability in aircraft has
led to the development of vehicles of a new type: hypersonic air-
planes with combination controls.

Hypersonic air-
planes fly at high
altitudes [30] and also
use fixed wings to gen-
erate lift. However,

a) b) the substantial decrease
in the effectiveness of
aerodynamic controls has

Figure 1.9. Diagrams of Rockets with made it necessary to use
Gasdynamic Lift-Generating Devices and gasdynamic controls on
Gasdynamic Controls. a) With fixed noz- hypersonic airplanes.
zles at center of gravity; b) with mov- Pivoting engines and
ing nozzles at center of gravity. pivoting nozzles are used

in this case [10].

Let us now consider several different schemes for gasdynamic
control of the last stages of rockets (Fig. 1.9). Let us place /18
two nozzles at the rocket's center of mass (see Fig. 1.9a). These

nozzles have a control system that directs the stream of gas
into the required nozzle. This develops a reaction force that re-
sults in application of an additional g-force to the rocket stage.
Pivoting nozzles have been used as devices developing controlling
moments on rockets.

Figure 1.9b presents a
diagram of a rocket with lat-
eral pivoting nozzles that are
used to develop secondary g-

-_ --_-___ - forces. As in the first

2 - ./ scheme, the control moments
are produced by nozzles mount-
ed at the end of the body.

Figure 1.10. Diagrams of Rockets The last stages of surface-
with Gasdynamic Controls. to-air and air-to-air rockets

designed for effectiveness at
high altitudes are provided with

gasdynamic control devices. Here the controlling forces are created

not by turning the body of the rocket, but by means of jet nozzles

[28].
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Figure 1.11. Diagram of Three-
Stage Rocket Booster for Space
Vehicle. 1) Third stage of
rocket; 2) third-stage stabil-
izing engines; 3) sustainer en-
gine; 4) second stage of rocket;
5) second-stage stabilizing en-
gines; 6) sustainer engines; 7)
first stage of rocket; 8) first-
stage sustainer engines; 9) non-
moving stabilizer; 10) aerody-
namic control surfaces.

Surface-to-surface missiles can also be made with two stages.The first stage consists of several groups of launch boosters 3,with deflector rings 1 mounted on nozzles 2 (Fig. 1.10). Rota- /2tion of the deflector through an angle 6 deflects the launch-booster engine Jet. Nozzle extensions may also be used togetherwith the deflectors [29].

These devices give rise to lateral forces that act on the

10



vehicle, and a rolling moment is also generated when a differential
control system is used. It is obvious in this case that the gas-
dynamic controls will be used when the rocket is climbing slowly
during the beginning phase of its flight. At this time, the aero-
dynamic controls are not effective enough to produce the required

flight trajectory or to counter roll disturbances. For this rea-
son, gasdynamic control devices are also used here (in the form
of deflectors, extensions, or pivoting nozzles).

Booster rockets are single-use multistage vehicles. Figure 1.11

diagrams the layout of a 3-stage spacecraft booster rocket. The
first stage 7 has a stabilizer 9 with aerodynamic control surfaces
10 and pivoting engine chambers 8. We see from this that the first
stage has combined controls - aerodynamic and gasdynamic. The
second stage 4 is fitted only with pivoting engine chambers 6.
Finally, the third stage 1 is provided with a single pivoting cham-

ber 3. The pivoting chambers are used to create lateral forces
that guide the stages of the rocket onto the desired ballistic
trajectories. Stabilizing engines - 5 for the second stage and 2
for the third stage - are used to counter rolling moments. Engines
8, which have a differential control system, are used to stabilize
"he rolling moment of the first stage at high altitudes. The aero-
dynamic control surfaces 10 are used at low altitudes [2].

11



CHAPTER II /2

EQUATIONS OF MOTION AND TRANSFER FUNCTIONS
OF AEROSPACE VEHICLES

In the design of control systems for aerospace vehicles,
the latter can be regarded, depending on their purpose and
geometrical dimensions, as rigid or elastically deformable
structures. Most airplanes and rockets (of the air-to-surface,
air-to-air, and surface-to-air types) are regarded as absolutely
rigid bodies, since their frames deform little in practice.
Booster rockets and strategic bombers are subject to considerable
structural deformation, and this strongly influences the design
of the stabilization systems and control loops for vehicles of
these classes. Nevertheless, even these vehicles are regarded as
rigid material structures during the first design stage. During
this stage, the layout chosen for the vehicle is evaluated, the
effectiveness of controls is investigated, and the stabilization
and control system takes form. The effects of vibration of the
whole of the rocket and motions of its liquid fuel during stab-
ilization and control are taken into account in the following
design stage. Below we present the dynamic equations of the
vehicle and its transfer functions, which do not, as a rule, take
these factors into account. Consideration of elastic hull vibra-
tions is discussed in Chapter IV and in detail in the book [15].

2.1. FORMALIZATION CONDITIONS FOR VEHICLE EQUATIONS OF MOTION

As we know, a mathematical model of any aerospace vehicle can
be assembled to represent the real picture of the physical proces- /2
ses that take place during flight with varying degrees of accuracy.
The completeness of a model is rather hard to define, depending
primarily on the nature of the problem to be solved, the type of
vehicle, and the extent and reliability of our knowledge of the
initial characteristics.

The type of problem to be solved determines the basic flight
regimes,ianalysis of which makes possible correct selection of the
reference system.

It will be recalled that inertial and noninertial reference
frames are distinguished in mechanics. Thus, the earth-based
coordinate system is a noninertial system, since it describes a
curvilinear motion in "immobile" space. However, it is possible in
certain problems of the dynamics of motion, e.g., for flight with-
in the atmosphere at velocities far below circular (V = 8.1 km/

c
sec), to neglect the earth's diurnal motion and curvature and to
assume that the center of the earth is fixed in space. In this
case, the earth-based coordinate system can be regarded as in-
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ertial. But the use of this coordinate system in study of the mo-
tion of space vehicles results in substantial calculating errors.
Thus, knowing the type of aerospace vehicle on the basis of its

application, we can simplify the notation of its equations of mo-
tion by taking the coordinate system into account.

Coordinate Systems

$ Let us examine the coordinate systems that have been used most
widely in determining the characteristics of aerospace vehicles as
objects of control.

The earth-based coordin-
Y g y* ate system. The origin of

the earth-based coordinate
system is placed at the center

y of mass of the ASV (Fig. 2.1).
The axis Ox lies in the plane

parallel to the local horizon
and is directed along the

7--/ -- ' tangent to the meridian in
the direction of the North
Pole. The axis Oy is direct-

Y / /ed upward along the local
g vertical. This axis lies in

z, / the plane of the axis Ox and

,/ is so directed as to form a
/ right-hand (left-hand) coor-

, / dinate system. There are also
Z other variants of the earth-

coordinate system, but they
Figure 2.1. Determination of PFosi- differ from one another only
tion of Airplane (Rocket) in in the position of the origin
Earth-Based Coordinate Axes. (moving or fixed on the

earth's surface) and in the /23
orientation of the Ox axis

in the plane of the local
horizon.

Body coordinate system. This system (see Fig. 2.1) is used to
determine the position of an ASV with respect to an earth coordinate
system. Its origin is placed at the center of mass of the ASV. The
axes Oxl and Oyl are placed in the vertical plane of symmetry of

the vehicle and directed along its principal axes of inertia. Since
the directions of the principal axes of inertia differ little in
most cases from those of the vehicle's geometrical axes, it can be
assumed that the axis Oxl is directed along the axis of the body

(or parallel to the wing chord),that the axis Oyl is perpendicular
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to Ox 1 , and that Oz 1 is perpendicular to the ASV's plane of sym-

metry and points in the direction of the starboard wing.

Written in this coordinate system, the equations of motion of
the ASV are simplified in certain respects as result of elimination
of terms containing centrifugal moments.

The position of the body system relative to the earth system
is determined by three angles: the angle of pitch 6, angle of yaw
i, and the angle of roll y (see Fig. 2.1). The angle of pitch 0
is the angle between the axis Oxl and the local horizontal plane.

The angle of roll y is the angle between the axis Oyl and the

vertical plane passing through the axis Oxl . The angle of yaw 4:

is the angle between the earth axis Ox and the projection of the

axis Oxl onto the local horizontal plane.

The relation between the angles of pitch, roll, and yaw on the
one hand and the projections )xi, oY, o)zi of the angular-velocity
vector w onto the axes of the body coordinate system on the other
are found by successive rotations of the body axes with respect
to the earth axes and is given by the formulas

me1 = +sin };

my,= cos&COs y +sin; (2.1)

ws,= COsy - ) COS sin y,

or, with respect to ,y, ~

~my, sin y+vI, cosy;

y=, --tgo(wy,cos y--m,, sin y); (2.2)

,= sec 6 (., cos y-z, sin y).

Semiattached body coordinate system. In this coordinate sys-
tem, the Ox axis is directed along the projection of the flight-
speed vector onto the plane of symmetry of the aircraft, the Oy
axis along the perpendicular to the Ox axis in the aircraft's
plane of symmetry, and the Oz axis along the span of the star-
board wing, i.e., it coincides with Ozl. -Aerodynamic forces and

moments are usually measured in the semiattached body coordinate
system in wind-tunnel studies. This is dictated by the design
features of aerodynamic balances.

A vehicle is oriented with respect to the free-steam-veloc-
ity vector by two angles: a and 8 (see Fig. 2.2a). The angle of
attack is the angle between the projection of the velocity vector
onto the vertical plane of symmetry of the vehicle and the bodyaxis Ox1, and the angle of slip 8 is the angle between the veloc-
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ity vector and the ASV's vertical plane of symmetry.

Drag and wind coordinate systems. In studying the motion
of a vehicle's center of gravity, it is convenient to use a moving
coordinate system in which the Ox axis is directed along the veloc-
ity vector V of the vehicle's center of mass with respect to the
air; if the Oy axis is then directed along the perpendicular to the
Ox axis, which lies in the local vertical plane containing the
vector V, and the Oz axis is directed perpendicular to the plane
xOy, the result is a drag coordinate system, whose position with
respect to the earth system is determined by two angles: 1) the
angle p between the projection of the velocity vector V onto the

local horizontal plane and the axis Oxg, and 2) the angle B bet-

ween the velocity-vector V and the local horizontal plane. The
angle 6 is usually called the slope or flightpath angle, and the
angle ' the heading angle of the trajectory. If the axis Oy is
placed in the ASV's vertical plane of symmetry perpendicular to
Ox, and Oz is perpendicular. to the plane XOy, the result is the
wind coordinate system, whose position relative to the drag sys-
tem is determined only by the angle y v When Yv = 0, the two

coordinate systems coincide. Let us write the kinematic rela-
tionships describing the variation of the angular coordinates
, 6, and y .

For the wind coordinate system

wx Vt+sin 0;

oW=Wjcos cosy,+' siny,; (2.3)

W,= - ,cos 0 sin +cosy,.

For the drag coordinate system

wx= Wv sin 0;

my= yVcos ; (2.4 )

where ex, My, cO are the projections of the angular-velocity vector
of the rotation of the drag (wind) coordinate system with respect
to the earth onto the drag .(wind) axes.

2.2. GENERAL EQUATIONS OF MOTION OF AEROSPACE VEHICLES /26

As we noted above, the earth's superficial rectangular coor-
dinate system can be regarded as inertial for vehicles designed
for flight within the atmosphere at velocities substantially
lower than circular. The motion of a "rigid" ASV in an arbitrari-
ly choosen moving rectangular coordinate system with its origin at
the center of inertia is described by a system of six scalar dif-
ferential equations, three of which reflect the condition of force



equilibrium in the projections onto the coordinate axes, while
three reflect equilibrium of the moments about these coordinate
axes [10, 201.

Airplanes and Rockets with Aerodynamic and Combined Systems for
Development of Controlling and Stabilizing Forces

The three force equations and the three moment equations take
the form

m (If+ V,,2 - V,o,)= F,;

m (I. + VXW - V.O) = F,;

J.,x + (J - J) o)y --x V ( - s) -
-x, (,i +,oXWo,) + Jim ((2 o) = M,; (2.5)

JwOY + (Jx - J.) WxWz + Jyz ( ")X.AO - O) -

- J., (jox+ W ,O) + J, ( i - , )= M",;
Z; +( 4, - J) o0 + Jx.. (OU, -,) - .,

- J, (;,+ W.O.)+ /J, ((02 - 02 =M,

where V., Vv, V, are the projections of the velocity vector of the

ASV's center of inertia onto the axes of the chosen coordinate
system, ox, w, ow are the projections of the angular-velocity vector
of this system relative to the fixed system onto the axes of the
chosen coordinate system, F,, F, F.are the projections of the re- /
sultant of all external forces acting on the vehicle, Mx, My, M,
are the moments of all external forces about the corresponding
axes, and J,,, J,, J, Yx , z are the axial and centrifugal moments
of inertia of the vehicle. Let us examine the composition of the
external forces and moments acting on the ASV and the basic re-
lationships used in aerodynamics to describe them.

The resultant external-force vector can be written (Fig. 2.2a)

F=P+F+G+F+Fd, (2.6)

where P is the thrust of the engine, F is the vector of the aero-a
dynamic foree--that arises as the vehicle moves relative to theair, G is the force of gravity, Fc are the controlling forces
created by the controls (deflection of control surfaces, change
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/28

Figure 2.2. Nomenclature of Angles of Attack,
Slip, and Roll. a) For airplane; b) ballistic
missile.

_ kgoffl/kgoft.bxs-hour- in direction of thrustvector, etc.), and Fd are

other action [12]. Resolv-S7 -. oo ing the vector F intoocom-
P,-.' ..-- D - ¢"l --hueh; ,,ponents along o the coordin-

S-. .1 ate axes, we obtain
-- a) F X=P±bGF±C, G Fde, ;d

Figure g2.3. Characteristics of Air o2.7)-
plane Engines. a) Altitude-SpeedCurves of turbojet engine with after- The basic characteristics

is the thrust at altitude H .and P thrust and specific fuel
i000 0  consumption. The thrustthe thrust at H = 0); b) specific function P = f(V, H) for

fuel consumption curves oponfully a fixed engine setting is
thrust-augmented turbojet engine, called the altitude-

speed characteristic and

is usually stated graphic-ally (Fig. 2.3a) [A0, 28].
The fuel-consumption curve for a given engine is similar in shape
to the thrust curve and determines the time variation of the mass
and moments of inertia of the vehicle (see Fig. 2.3b) [s0, :28]
The direction of the thrust force is stated in the body coordinate

system. As we know from our course in aircraft aerodynamics [19], /29
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it is customary to express the force Fa in terms of the dimen-

sionless coefficient cR:

Fa=c ~, (2.8)

where p is the mass density of the air, V is the flight speed,
and S is a characteristic with the dimensions of area. When the
aerodynamic force Fa is projected onto the axes of a system bound

to the vehicle, the forces usually distinguished are the frontal
drag X, the lift Y, and the lateral force Z; they are expressed
in terms of the respective dimensionless coefficients Cx, Cy, and
cZ:

X 3SV2 StnV2 SV2
2= - ; (2.9)

As a rule, these forces are stated in the semiattached body coor-
dinate system. The dimensionless coefficients are, in general,
complicated functions of both the geometry of the vehicle and the
kinematic parameters of its motion. Their expressions are usual-
ly limited with accuracy sufficient for practice to the linear
terms of the Taylor-series expansions

cu=c ~M ()+ a c (M) c () . . .
c,=cX,(M) c +c .*8 ... , (2.10)/3

where M is the Mach number.

The frontal drag coefficient is presented in the form

c,= co (M)+ A (M)c +c, (H). (2.11)

The dimensionless coefficients c8, ca appear in the expressions
for the aerodynamic control forces Fcy and Fcz. Controlling
forces from the powerplant are created either by changing engine
setting or by changing the direction of the thrust vector (see
Chapter I). In studying the moments on the ASV, it is more con-
venient to use the body coordinate system. We shall therefore
consider all moments with respect to these axes from now on. The
principal moment of the forces can be written

M = M + M+ M + Md,  (2.12)

where Ma is the static aerodynamic moment, which depends on the
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position of the'Ox axis, with respect to the velocity vector

(angles a, ,), Mdp is the aerodynamic damping moment, which

depends on the angular velocity of rotation of the vehicle

((, U, z,,I, ,I 3) , Mc is the controlling moment developed by the con-

trols (6a' r 6,...), and Md is the disturbing moment due to

thrust eccentricity, asymmetry of the tailplane, and the effects

of wind and other factors not taken into account in the preced-"

ing terms in equation system (2.5). In addition, all-of-the

above momients depend on flight regime (H, V). Projecting the

principal moment M onto the body coordinateaxes, we obtain

Mx, .My ,and M,. In aerodynamics, moments, like the aerodynamic

forces, -are writtenin terms of dimensionless moment oefficients:

ISQV 2  ISov2 bS0 V2
S= mx 1 1 = my 2 z=z , .13)

2 2 2

where I is the half-span of the wing and b is its aerodynamic /31

chord. .In.the general, case, expressions for the dimensionless

moment coefficients are usually terminated after the sec'ond-order,
Taylor-series terms. As a rule, only linear terms. of thelexpan-
sion are taken into account for ASV.with airplane, configurations.

For. vehicles with small-aspect-ratio wings, and especially for
"canards," the rolling-moment coefficient mx is strongly influenced

by asymmetry of the flow at nonzero angles of slip; consequently,
it is often necessary to include terms with second derivatives.

Confining the Taylor-series expansion to linear terms, we

can write the coefficients mx, my , and m z in the following forms:

mx = X mx, m x  mV-,+ m, + m'-,. +

m,= myy + mxwx fms +ml +
(2.14)

• .;

m, = m;a+m a+tmo,+m . . . .

The.:quantities mex, mx, etc..are the partial derivatives of the

aerodynamic-moment coefficients mx , my, and m z with, respect to,

the parameter indicated by the superscript and, are, in turn,

functions of Mach number.. ::Using- relations (-2.5)-(2.13), we

write the dynamic' equations of motion for airplanes, and rockets :

with respect to their axes in- the form
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m (V,+ Vw,- V,o.) = P,+

2

+ C, Q -l- mgt + F,, u Fd ;
m (W, + Vo, - V,) = P +

SQ2V2+c, -+fm+ie 0 +Fa

m ( -- Vu,<ox -- Vxo'u) =P,+c, -- n ' mz +
+-F,+ F,; F

=Jc + (4J - Ju) 'om W + Jx (ox - ) -

=m.V2 C+ M. + Md.;2 
(2.15)

= mYSV' 2  + Md 1;

J,A + (IV- J.) 0.,( -+ J. ,(egW - wk)-

- U (,y ,+ wU) + hY ( - =

bSQV2

This equation system will be linearized later and brought to a
form convenient for determination of transfer functions for air-
planes and rockets.

The expressions considered above for the aerodynamic forces
and moments acting on ASV's are conventional and are widely used
in practical calculations to determine the characteristics of the
vehicles as controlled objects. The expressions given for the
dimensionless coefficients [(2.10), (2.14)-] are used in linear-
izing the equations of motion (2.15) and can, if it is necessary
to obtain high accuracy in the solution, be supplemented by non-
linear terms of the expansions.*

Supplemented by the kinematic relations (see Sec. 2.1) and
by the laws of variation of the mass and moments of inertia, the
equations of motion (2.15) describe the motion of the vehicle in
three dimensions and form a system of nonlinear differential
equations. As we know, it is generally not possible to find solu- /3

*It is assumed that the aerodynamic characteristics of many vehi-
cles are linear over the entire in-flight ranges of the angles of
attack a and slip $ and the angular velocities.
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tions for such equations in elementary functions or quadratures.
Subsequent work with the equations can therefore take at least
two directions.

1. Use of digital computers for analysis of the equation
systems. Computers can be used for numerical integration of dif-
ferential equations of practically any complexity and with the
desired accuracy. In this case, an attempt is made to take ac-
count of complicated nonlinear relationships in which the aero-
dynamic forces and moments depend on the parameters of the vehi-
cle's motion, to introduce various refinements into the equation
system to .interrelate the control channels, etc. The result is a
unified interrelated equation system that gives a rather complete
picture of the vehicle's complex multidimensional motion.

2. Simplification of the system of equations of motion of
the ASV for preliminary selection of the parameters of the auto-
matic devices used in the stabilization and control systems. In
this case, the three-dimensional motion is resolved into longi-
tudinal and lateral motions of the center of mass and a motion
about the center of mass. The vehicle's equations of motion are
linearized with allocation of the'motion among the control chan-
nels.

The first direction requires detailed study of the specific
vehicles and control systems for them. The results obtained can
be used for analysis or synthesis of the automatic system as a
whole. The second trend, on the other hand, brings out the bas-
ic properties of the vehicle itself as an object of automatic
control, and this is the purpose of the present book.

Liquid-Propellant Rockets and Rocket Boosters

A distinctive property of vehicles of this type is the pres-
ence of substantial liquid masses on board. Movement of liquids
through pipelines and in the propellant tanks of the rocket re-
sults in the appearance of additional forces exerted on the body
of the rocket by the liquids. Most significant among these are
the Coriolis and inertia forces, which must be taken into account
in Eqs. (2.5). The Coriolis forces are much larger for rockets
of the present class than for airplanes and winged rockets, since
the lift of large rockets is produced only by engine thrust, and /34
this requires high per-second fuel and oxidizer flowrates. The
Coriolis force and moment exerted on the body by the liquid
flowing in a J-th pipeline at velocity vr relative to the body

can be found from the relations

F.I=- 2oXvdm; M/,=S2r'Xwxv,dm, (2.16)

where w is the angular velocity of rotation of the rocket.
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The total Coriolis force and the corresponding moment are

N' N

: =Y F , M..= Me 1- (2 .17)i-1 i-I

Inertial forces arise as a result of the mobility of liquids
in propellant tanks. The free surfaces of the liquids are deflect-
ed from their undisturbed positions in the presence of accelera-
tions and angular velocities that arise under the action of extern-
al forces and moments. In turn, the sloshing liquids give rise to
forces and moments that act on the body of the rocket.

Writing the equations of motion of a
body with cavities that are partly filled by
liquids is a complex task that has been
studied in a number of works [1, 17]. Let
us describe the basic premises and results of

0 solution of this problem. The liquids are
Z regarded as ideal and incompressible, and

their motion as nonvortical, so that it can
be described with the aid of the velocity po-
tential. On the assumption that the deflec-

tions of Liquid tions of the free surface fromits undisturbed
Surface in Rocket position are small, a partial differential
Tank. equation is written for this potential. In-

vestigation of this equation, together with
the system of Ordinary differential equations

describing the motion of the rocket's body, involves major dif-
ficulties and can be completed only when the fuel tanks are posi-
tioned symmetrically and have simple shapes, e.g., those of the
cylinder or sphere. It is.possible in these cases to introduce /
generalized coordinates that satisfy the ordinary differential
equations, which is equivalent to replacement of a system with an
infinite number of degrees of freedom by a system with a finite
number. We might, for example, choose as these generalized coor-
dinates the angular inclination of the free liquid surface near
the line at which it intersects the plane of the undisturbed level
and the angular rotation of this line relative to the Oz axis
(Fig. 2.4). It can be shown [1] that these coordinates (we shall
denote them by q and p ) satisfy the equations

q., + + = (R+,s, +q, +q&+ R,&&) cos p,+
+(kRv,'+R, )sin p;1 (2.18)

(here v is the number of the fuel tank).

These equations are similar to the equations of pendulums
with natural frequency 0 and damping e andV.j, respectively.

The right-hand side expresses the forces exerted on the liquid by
the solid body of the rocket. Theoretical calculation of the
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coefficients RI, R,,R,y and Q is possible only in simple cases,

and the damping can be determined only by experiment. It is
usually very small, and this gives rise to substantial difficulties
in the design of automatic stabilization systems and makes it
necessary to introduce mechanical dampers, perforated partitions,
etc., thus increasing design weight. Great importance attaches
to the natural frequency, which is determined by the relation

Q,=)VXn 9-.V , (2.19)

where X is a certain constant and gx is the projection of the

acceleration of gravity onto the same axis. This relation is
physically lucid.

A simple interpretation can also be found for the:expression
for the force exerted on the body by the moving liquid;

F, - r,,qcos p,. (2. 20)

We see that it is proportional to the generalized accelerations, /36
and that the coefficient Ay plays the part of a mass associated

with the coordinate qy.

Similarly, we have for motion in the yaw plane

N

Fj=-- 4,q,sin p,. (2.21)

The component.acting on the body along axis Ox is, as we should
expect, equal to zero:

F,,l 0O.

The expressions for the moments take the form

N

Ml,= - i
v-1 v-

Mi - ,o-gx) Rq, cosp,. (2.22)
.l- v-l2
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We note that only the fundamental vibration frequency is
taken into account in each tank in the above description of
liquid, sloshing. Consideration of higher harmonics results in
only minor corrections because of the rapid decrease in the coef-

ficients R(, R(")', . (") with increasing harmonic number n. Let

us now turn to description of the motion of the rocket's body
with consideration of the Coriolis FC and liquid FZ forces and

the corresponding moments M C and M .

We write the equations of the forces and moments in the pro-
jections onto the body coordinate system on the basis of Fig.
2.2b and Eqs. (2.5) with consid-eration of the symmetry of the
ballistic missile with respect to the Ox axis. We shall assume
that there is little change in the directions of the principal
axes of inertia during flight. In writing the equations, we
assume that the directions of the principal axes of inertia
coincide with the axes of the rocket and do not change during
flight; the result is the system

m (i,+ VOv - V' )= P,+ c, svI22

+mgx F Fc+Fx+FdxF j x;

m( ,V,w, -.V)= Py p+c +

m (V + V,: - VwO) = P, + c, SV 2

2
+g +4Fc+Fcu+F +FI ;

Jw, (, - V,) = Pm,+ sc.-V +s

(2.23)
+ M,P+ MC +M + M, ;

Jyy (J, - J,) i,o = m bSV2 +

2

q+0, , +2zq,.= (R. R.- + R.

+R,0) cos p, + (R., +zfZ R ) sin p,;
P.+ P. + ,P,=Ra;i;

v= 1,2, . . . ,N,

where Fc.= 2m (V w - V,,)
F r (V w2 -Vz)
Fcz= 2m (V,wu - Vl.,)
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are the-Coriolis forces; MCx, MCy, and MCz are the moments of these

forces,Px, Py', and Pz are the total thrust forces from the rocket's

engines; and Mpx Mpy, and Mpz are the total moments of the rocket's

engine-thrust forces. We shall assume that the flow of the gases
and liquids within the body of the rocket is axially symmetrical;
then the Coriolis force and its moment have the components L

F.. . ./ - (2.24)

The Coriolis moments have various effects on the rocket. If the
engines::are aft of the center of mass, the damping moments are
larger than the driving moments, i.e.,

M'Z <0. (2.25)

We shall assume that the air in which the .ehicle is flying has
a velocity Va and also.cdnsider N engines. Wei denote the projec-

tions of engine thrust onto the axes by Pjx, Pj, Pj, and the angles
beteen the thrust vectors and the y and z axesi'by .j and A.. Then,

considering the smallness of the angle between Ox and the'engihe-
thrust vectors, we can write

J

Py~ Pji; (2.26)
J

. PJXJ.

Denoting by xj, yj, and zj the corresponding distances.from

the point of application of vector P on the nozzle exit section
to the center of mass of the rocket, we obtain'

j5

MP"= (xjTj - yj) PiJ.

" 2
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Equation system (2.23) can be brought to the following form on the
basis of expressions (2.24-2.27):

( .I tV,w- VW,)=,' Pj +LS (V.X-12

- Va+.,) mg,+ +Fd,+Ft ,;

m (u+ V.,,-V,,wv ,)-- P= 2 x

Sx(V,- Vax) (V,- a,,) + fg, +F' -'u,,+
+FCV+Fd,+Fl;

m(W),+v,,,- vs,,)= PXPj +(xo +)s2 x

x (V, - Va,)(V, - Va.) + mg,, + F, , +
+ FJ +Fax+Fi ;

J,, + (J. - J,) ovw, = mIso V+2

+1 (y;- zjy) Ps+ Max + ,Ma,; (2.28)

Jd ,.+ (Jx- J,)wO = my tISV 2

+M,+Mad+Ml Y;

+ " (xjT- yj) Pi + ,+

+ eq,+ 22q, =(R.,V, + R,'4 +R,aR)cosp,+

+(Ri, + R,') sin p,;
: + tLv, + QSp, = R;.

v=1,2, . . . V.

The resulting equation system (2.28) is then linearized, and the /
linearized equations are used to determine the transfer functions
of the ballistic missiles and rocket boosters.

2.3. LINEARIZATION AND BASIC METHODS OF SIMPLIFICATION OF AERO-
SPACE-VEHICLE EQUATIONS OF MOTION

The methodological aspect of linearization of the system of
differential equations describing the motion of an aerospace ve-
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hicle is illuminated quite fully in a number of works on flight
dynamics [18, 21]1. We recallithat the method for linearization
of the equations is essentially based on the assumption that the
parameters of the disturbed motion (V, a, P, y, 0, V,... and their de-
rivatives) differ little from the parameters-of the initialmo-
tion at the same time. Terms containing the deviations of the
disturbed-motion parameters from the parameters of the initial
motion in powers higher than the first can then be neglected in
the equations of motion as small quantities of higher order. It
is more convenient to linearize the equations of ASV motion
after first dividing, them into two independent systems, on'e-of
which describes the longitudinal motion and the other the later-
al motion. The fuhfdamental possibility of this separation re-
sults from the symmetry of the.-vehicle about the longitudinal
plane OxlY 1 . If.flight takes place in a certain vertical plane

and the plane of symmetry of the vehicle coincides at all times
with the flight plane (as is possible, for example, with ideal
roll stabilizatign), then the kinematic parameters p,y,x, o,)

will at all times equal zero. In this case, the vehicle's mo-
tion will consist of a progressive motion of its center of
mass along the axes Oxl and Oyl and a rotational motion around

the axis Ozl . This, is known as the longitudinal motion, and is

characterized by the parameters V, 0, 0, a, z, H, x. Accordingly,

the lateral motion consists of progressive motion of the center
of mass along the axis Oxl and rotational motions-arourid the

axes Ox1 and Oyl. We should note at once that no matter how we

simplify the equations of the lateral motion, we shall never be
able to exclude from them such longitudinal parameters as V and
H. This means that to investigate the lateral motion independ-
ently, it is first necessary to determine the manner in which
these parameters vary as. time functions,, i.e., the differential /41
equations obtained for the lateral motion will be equations
with variable coefficients. The possibility of resolving the
controlled motion of the ASV into longitudinal and lateral mo-
tions also hinges on the operating characteristics of the flight-
control system. If the deflection of the pitch controls depends
only on the longitudinal parameters,, and the deflections of the
yaw and roll controls only on the lateral parameters, it is pos-
sible to breakdown the- over-all motion in this way. The result-
ing simplification of the equations of guided motion of the
ASV makes it possible to lower the order of the equation system.
by half 'and is used extensively in analysis of ASV flight. To
determine the characteristics of the'longitudinal motion, it is
more convenient to write the equations of the forces acting on
the ASV in the directions of the Ox and the Oy axes.in the wind
coordinate system and the equati6n of moments 'in the body system.
In the wind system, Vx=V, V==V'=0, ,=i, and the equations of sys-

tem (2.5.), which describe the dynamics of the longitudinal motion,

27



assume the form

mV6= F,; (2.29)

Jf=M,.

Equation system (2.29) must be supplemented with the geometrical
relation between angles

=0+a. (2.30)

The projections of the forces onto Ox and Oy are determined by the
expressions (provided that the direction of the thrust force coin-
cides with that of the wing chord)

Fx=Rcosa-X-GsinB Fax ; (2.31)
F,= Y+ Psin a-GcosO+Fdy,

where P is the thrust of the engine, X is the frontal drag, Y is
the lift, and G is the weight of the vehicle. The manner in which
the mass and moments of inertia of the vehicle vary is usually
known, and is determined in terms of the specific propellent-con-
sumption curve and the depletion-sequence program:

m(I)=mo- 1dt, J() =f(C,1). (2.32)

Further simplification of equation system (2.29) is based on the
possibility of resolving the longitudinal disturbed motion into two
different types of motion: short-period and long-period. The phys-
ical factors responsible for this character of the disturbed motion
are the same for all ASV's. The vehicle can change its angle of
attack very quickly by rotating about its center of mass. At the
same time, the flight speed of the vehicle varies comparatively
slowly. The period of the long-period oscillations is usually
several tens of seconds (30-100 sec), while the period of the
short-period oscillations is a few seconds (1-4 sec). In consider-
ing the short-period motion, therefore, we may neglect the veloc-
ity deviation AV and assume that the velocity is a known function
of time. With this assumption, we may take, instead of the com-
plete system of differential equations of motion (2.29), only the
second and third equations, which determine the response of the
vehicle to deflection of the controls 'and to disturbances that
offset the equilibrium of the moments and forces with respect to
the Oz and Oy axes, respectively. The characteristics of the
short-period motion are basic to the preliminary mathematical
design of flight-control systems in the longitudinal plane, and
we shall devote most of our attention'to them below. For example,
it is necessary in a number of cases to consider the dynamics of
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speed and altitude variation in investigating systems for flight
speed and altitude control. The.first two equations of system

(2.29)

(2.33)

are usually considered in these problems, supplemented by the mo-

ment-equilibrium equation

M,(V, H, a, Be)=O

(the degenerate third equation of system (2.29)) and 
by the kine-

matic relation

HV sin . (2.34)

Physically, this means that when the controls are deflected, the

angle of attack assumes its balanced value instantaneously, with

the result that the condition Mz = 0 is satisfied throughbut the

entire flight. Let us linearize equation system (2.29) separate-

ly for each form of .ASV motion. We shall consider the short-

period motion, the approximate equations of which are obtained by

dropping the first equation in system (2.29). In the remaining

equations, velocity and altitude are assumed to be known time

functions. In accordance with the .conventional procedure for

linearization of the equations, weassign small increments to the

parameters of the vehicle's motion, expand the aerodynamic 
forces

and moments in Taylor series in these increments, cut this expan-

sion off at the linear terms, exclude terms of the second. order

of smallness from consideration, and replace the sines and cosines

of the angle of attack by the approximate expressions

sin a a, cos a I. .(2 .35)

As a result, we obtain the equations of-the short-period motion

in the form

J_ .=Ma&' + 1Ze. (2.36)

where z, , . . . are the partial derivatives of the forces and

moments with respect to the parameters indicated by the superior

indices.

Using the conventional notation of aerodynamics for the
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forces and moments (see Sec. 2.2), we can write the coefficients
of the equations in the form

F c 2 +P; F9-Si 00;
S 2

ate SV2 m bS qV 2

Y 2 ' 2

- mzab2SqV = b2SQV (2.37)
A 2 z 2

M _m bSQV 2

2

where the coefficients my , and m; are brought to dimensionless

form with the relations

m*z= _ and m==mn~.z z V z n

Thus, we have arrived at a system of linear differential
equations with variable coefficients whose law of variation is
asigned as a function of time and determined by the flight trajec-
tory chosen for the ASV. Let us write equation system (2.37) in
the form

n; +n,a+ +n- = n ,., J (2.37')

where F
z,= : z= ; M Ma

mV mV J z

Here and below, the sign of the increment A is omitted to abreviate
the notation. If level flight is taken as the initial motion, the
coefficient z& will vanish. Substituting w for ,o in the equa-

tions, we obtain

a+ z.a- -, =-- z, ! (2.38)

n; a + na + 0,+ n. = na,8. B.

These equations are usually used to study the short-period com- /
ponent of the motion when it is important to evaluate the frequency
and degree of damping of the oscillations. The coefficients of
equation system (2.38) for the F-101 aircraft are given in Ap-
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pendix 1 [27].

Consideration of the gravity component Z # 0 (for e0 9 0)
has little effect on the nature of the short-period oscillations
defined by; Eqs. (2.38), adding only an aperiodic component of the

motion with a large time constant. In the design of automatic
pilots for longitudinal stabilization of ASV's, therefore, the
rule is to use equation system (2.38) with the angle of pitch 0
obtained by simple integration

dl.

Let us consider the characteristics of the ASV's long-period mo-
tion. In the linearization of Eqs. (2.29), which describe the
long-period motion, account is also taken of the dependence of
the aerodynamic forces and moments on the velocity and altitude
increments u and h:

AF,=Fa FO -6 F'u -I- Fh Fi * Ft ,;

where 6t is the throttle deflection angle.

Linearizing Eqs. (2.33) and (2.34), we obtain a system of
linear differential equations:

a= c 1u + c1,ac +- c1 + cjh + a z

= cU + C2a + C23 + C24 Z + Z .+ Z, tt; (2.39)

h= c3n + c,e;

0= c,4  c4,a + c 4,h m +

where
pV SOVO + Mo

C1= - c sov. 0

x 2m 'm ,

c 1 3 = -g COS 0o;

1 !=- , P cxSVg P

c 4 m=-1 - 2 H at= t
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Soo i+ ,,Mo2 ) pfMo0
C2 M uy . 2 ] V2 °

C, a SCOo P ; c, - E sin 0o;
2m mVo V o

cYSVo d P" P
C24 -- -a- +-V ao; z =- ;zt =- ta

2m OH mV 0  i mV t my

c81=0 0 ; c32=O; c33=Vo;

o (mo)^ + %o (m:) " + (mrln)A,
a

C42 = mZ; c44 = 0;

V0 and 00 are the values of the initial-motion parameters. Let

us elaborate on the method of evaluating certain coefficients,
e.g.,

o M, dMo M Me,,= ,M " = - v av - ) QO+ ,

where

0M,1 bSQoVo Vm m,

OV Jz 2a

OMM bSQoVo V 1v= -- '"-- m (me)

dV 1Z + 2a ( M,

where a0 is the balanced value of the angle of attack. (in un-

disturbed motion), 6eO is the balanced value of the control

deflection, and a is the velocity of sound. Summing, we obtain

M = bSoV ,,[,+m;amo+aOmIo+

V - .+(m,)+(m)

where the sum of the first three terms expresses the balance
condition, and equals zero. We then determine

Sm bSQV 2  mZbSOV2
z 2Jz ' 2Jz
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It can also be shown that the partial derivative a,,, equals zero.

thus, the static moment-equilibrium equation' 
is written

S[(m~)f + (m)Afrao+(m7)' E , um;a +m2= 0.

Using the balance equation for the moments, we 
eliminate the varia-

ble a from system (2.39). We then have

IUt = c- cI- h=a 0 h"a ah 8-
(2.40)

- c;1u 4 0 - C230 C;4h -i Z&

- C31U - c, 36 + h O,

where ..
C41C12 C12C44  

12MZ

11, 11- C 
C

4  - ' ai - '
C42 C42 4 C42

C22C41 C 622644, . C2, m
c 1 =c 1 .- C2 4 C2 4  -z .

C44 C42

Depending on flight regime, the coefficients 
of system (2.40)

are either constants or functions of time. The differential equa-

tion system (2.40) investigated in problems of stabilization 
of

ASV altitude and speed has constant coefficients. For such flight /48

conditions as programmed climbing, acceleration, and deceleration,

we obtain an equation system with strongly variable coefficients,

since the rates of change of the coefficients are comparable 
to

the rates of change of the flight parameters.

As we noted above, the lateral motion of the ASV consists 
of

a progressive motion of the center of mass 
along Oz and rotation-

al motions around the axes Ox and 0y. This motion is described

by the 3rd, '4th, and 5th equations of system 
(2.5). Let us write

these equations in the body coordinate system, 'which is the most

convenient .in this case. We note beforehand that in virtue of

the vehicle's symmetry about the xOy plane, the centrifug'al mo- "

ments J Z and J are small and can be excluded from.the analysis.
xz yz

We have

-- Jxu(-,+,,)= M , (2. 41)

Jx .r ( -Jz --J) OU((Oi Z :

.. .- J,, (;Vv, - V ,',)= *,"33
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We supplement the system with the relations

V-==V cos P cos a;

Vy- - V cos P sin a; =/Ux cos ;
cos 4

V, V sin ; , -- Wcos y tg .

Considering the actual ranges of variation of a and 8, we
replace the expressions for Vx, Vy, and Vz by their approximate

values

V.-V; Vk -- aV; v, [V.

From now on, the products of small quantities wxz and wy z can be
neglected in accordance with the method of small perturbationsused in linearization of the equations. In a number of cases,
however, as in investigation of the influence of inertial cross
couplings on the lateral motion, these terms can be taken into
account by programming the variation of (J-J,)<,, (J2 -J)W,,, J),I
as time functions. Having made the substitutions indicated, we
reduce Eqs. (2.41) to the form

mV (f -- aw, - . ) = Fz;
J fov,- J~wx,= Itv,;
JXJ, - Jx,,U = M,; ( 2.42)

coy, COS 7

cos 8

Y= X - lV, cos y tg .

The projection of the forces onto Oz is formed as follows:

F,=c. +Sca- -+ G cos 0siny,

where the first term is due to the presence of the angle of slip,
the second to deflection of the controls, and the third to varia-
tion of the gravitational-force component. On the assumption thatthe initial roll equals zero (y0 = 0), the linear lateral-force

increment is usually written

Z S2 c2 O cos 4oV

As a rule, the moments are asigned in the semiattached body coor-
dinate system. Then the projections of these moments in the later-al motion onto the body axes are written
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Mx,=M., -M sin -M:, + M ;
my, = Mv - M. sin a. .')1u - Mxa.

Representing the deviations of the moments in the form of expan-
sions in the increments of the variables P, )x, O)y, 6, we obtain

+-) S/50 X

/I

where the partial derivatives of the moment coefficients with
respect to the variables of the motion mO, ... have been converted

to the body coordinate system and are functions of the Mach num-

ber and the angle of attack a (the "half-span" Z of the wing is

taken as the arm), while the derivatives mox, m,,u m, m1x are re-

duced to dimensionless form according to

m , = =mx , m t=m n-L etc.
X X2V y2V

Substituting the expressions for the forces and moments into

Eqs. (2.42) and introducing the new nomenclature for the coef-
ficients, we write system (2.42) in the form

I y C)9I + 1 - 1 VX + IrO)V + '6-- W
S Jx

el = ' ~ "~ x,-, -7np- n; me +
+(2 .43)

(Y1
cos 80

where

CB SoV g cySoV
zP z zy 0 cos 1o; za , 2m

p 2m " 2m
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mO.S&V2 m 12S OV

2J,x 4

m'"Zl2 SQV m a ISV2

r 4Jx a 2Jx

rm1 ISQV - m ISQV 2

I Up

S ISqV2 . n m ISV2 - mI 12SV.

2Jy 2Jy 4Jy

ao, o are the programmed values of the parameters of the ve-
hicle's longitudinal motion.

To convert to the Cauchy notation of the equations, we

eliminate the terms x-* and J-x., from the second and thirdJW Jy

equations of system (2.43) by substitution. As a result of the
linearization of system (2.41), we have

= ao(x + OY - z , zly + Zrr ,;

+ no;

V=W j _W~tg 0,;
cos 10

The procedure for obtaining the coefficients of Eqs. (2.44) is
obvious and requires no explanation.

Thus, we have arrived at a system of linear differentialequations with variable coefficients whose law of variation isdetermined by the nature of the vehicle's motion in the longi-tudinal plane. These equations are usually used to investigatethe stabilization of airplane-configurated vehicles, since suchvechicles are characterized by strong reciprocal effects betweenyawing (rotation around Oyl) and rolling (rotation around Oxl)
motions and, strictly speaking, one motion cannot be separated
from the other).
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However, these reciprocal effects are small for axisymmetric

ASV's, and the'separation into yawing and rolling motions is le-

gitimate. In addition, a similar division is often used for air-

plane-configurated vehicles in preliminary studies 
.of their charac-

teristics, with subsequent conversion back to the more complete

equations.

Bearing these remarks in mind, we proceed with further sim- /52

plification of the mathematical model of the ASV. We shall as-

sume initially that the angle of pitch 0 and the angle of at-

tack a are small and that the centrifugal moment of inertia

J = 0. Discarding the products of small quantities, e.g.,
xy

Wyl tan 0, we arrive at the following equation system:

+P=+wu -ZPP +-!V Y+zI 1
+ n;(2 ) x 45)

As in the case of the longitudinal channel, the lateral mo-

tion can, with certain assumptions, also be broken up into sep-

arate components: yawing motion, rolling motion, and spiral mo-

tion. We obtain the characteristics of the first two motions by

assuming straight-line plane motion of the vehicle in which it

describes oscillations about the velocity vector, whose rotation

is not taken into account. This assumption is based on consider-

ation of the large inertia of center-of-mass motion under the

action of lateral forces. In this case, the first equation of

system (2.45) is excluded from consideration. Applying the re-

lations itp and o, ,P, which are valid for this motion, we

rewrite the equations inthe form

9+n4+nl=4+nA+na) (2.46)
, Xl .I 4 +

where n =n n,..

This equation system is used when there is a strong cross-

coupling between the roll and yaw channels via the 
coefficients

ny and Zr Further simplication is possible only after prelim- /53
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inary studies of the solutions of this system. For axisymmetric
ASV's, for which the coefficients ny and Ir are small, and for

airplane-configurated vehicles with roll stabilization, the equa-
tions can be further separated by channels:

X- t1X (2.47)

The first equation of (2.47) describes the yawing motion
and serves for determination of the basic characteristics of the
vehicle's response to both control and disturbance inputs. The
second equation describes the isolated motion in roll and is used
for the same purpose as the first.

The spiral motion is a slow motion with a large time constant.
A small spiral instability is permitted most ASV's so that it
will be possible to obtain the desired values of more important
flight-performance parameters, such as the relative damping fac-
tor for yawing motion. Spiral instability is not usually regarded
as an undesirable effect because (owing to the slowness of the
motion) it can easily be eliminated by the pilot or by the control
system. In the absence of.control, the angles of yaw and roll
increase and the airplane gradually builds up a motion with high
velocity along a descending spiral.

The characteristics of the spiral motion can be obtained from
Eqs. (2.45) by considering rolling motion without slip and with-
out consideration of the yawing moment:

g 1 (2.48)

or

Yt Y ,yv+ 18 . (2.49)

Often, in an analogy with the short-period motion in the longitud- /5
inal plane, yawing motion is studied with consideration of the
equation of the lateral forces on the Oz axis. Applying the re-
lations T J , - 8, Z : - 8, and w Z I we obtain from the

first two equations of system (2.45)

r r (2.50)

+ n8+npt= +n',+n W- n .,
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This separation of the vehicle's motion by channels usual-

ly makes it possible to establish the vehicle's basic dynamic

properties. For rockets with aerodynamic controls and for a

number of airplane flight modes, however, this simplification

may lead to substantial errors in estimates of the vehicle's

'local stability. In these cases, it becomes necessary to take

account of cross-coupling between the individual forms of motion

without greatly complicating the mathematical model of the vehi-

cle.

As we know [7, 22], the relation between the longitudinal

and lateral motion is mediated by the aerodynamic, kinematic,

and inertial interactions, and by the gyroscopic moment of the

engine, and the terms of the equations that describe these

couplings are nonlinear. The aerodynamic effect is taken into

account with longitudinal aerodynamic-force and moment coef-

ficients of the second and higher orders, e.g.,m n Ir, 'U, m tl

Sn'"x, c , etc.

By kinematic interaction, we refer to the simultaneous

change in the angles of attack and slip when the vehicle is

thrown sharply into a roll. This interaction is taken into ac-

count in the equations of motion through the terms awx and Bax,

and strongly influences the dynamics of the motion in flight at

large angles of attack and slip. We shall henceforth discuss

only these two types of interaction as being the most important

ones. It is known from practice [16, 191 that the dynamics of

the vehicle's motion are subject to the widest variations in

the roll channel (equation of moments about the longitudinal

axis of the vehicle).

For airplane-configurated vehicles with a single plane of

vertical symmetry, the nature of the longitudinal motion is

generally rather insensitive to changes in the steady angle of /55

attack (in the range of subcritical angles of attack). Further,

when we recognize that the angles of slip are small in most

flight modes (except when complicated three-dimensional maneu-

vers are being executed), we may neglect the influence of lat-

eral motion on the latter. The simplified equations of lateral

motion can therefore be written as follows with consideration

of a number of aerodynamic and inertial interactions:

= -- z (G) + " +.a-) - 1+(
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Several coefficients of this system are nonlinear functions
of the longitudinal-motion parameters and reflect the change
in the conditions of flow past the aerodynamic surfaces on
variation of a and 6 . One of the possible simplified methods

of investigating lateral-motion dynamics consists in "freezing"
the angle of attack at various levels and using equation
system (2.51) as a basis for determining a series of transfer
functions with coefficients that depend on the parameters
a0 and 6e0 Assigning various values to a0 and 6 e0 we can use

the method of small perturbations to take account of the effects
of the longitudinal channels on lateral-motion dynamics.

For rockets with axisymmetric wing designs, the longitudin-
al and lateral planes of the motion are equivalent in regard to
the development of normal forces, i.e., the angles of attack
and slip have identical ranges of variation. A normal force
can be developed in any direction by assigning specific combina-
tions of angles a and $. In this case, the additional moment
that arises around the vehicle's longitudinal axis due to the
"crossflow" effect can be taken into account with sufficient
accuracy by the relation [22]

Lf = ma2 -)+ 2 (aCO.- q), (2.52)

where m i and m2 are constants.

Considering the aerodynamic symmetry of the rockets and
the most significant couplings, we write the equations of three-
dimensional motion in the form

a= -za ( , -; 1 /56
a- - na - n,), - nAe 

/6

-zpP y ao,; j(2.53)

Ito, - 1- L .

Preliminary investigation of system-stability problems re-
quires conversion to a linear model by the method of small per-
turbations. It is generally necessary to carry out the anal-
ysis for various combinations of angles of attack and slip and
control-surface deflections.

We shall consider the most typical operational flight modes,
from which inferences may be drawn as to the nature of the three-
dimensional motion as a whole:

a) longitudinal channel with "frozen" lateral channel (0 =
6 = 0); 0

r 040



b) lateral channel with "frozen" longitudinal channel (a0

6 -= 0);
e0

c) a0 = 0 and 
6e =6r.
e0 r0

.

a)

Figure 2.5. Structural Diagrams of Vehicle

With Consideration of Cross Coupling Bet-

ween Channels Due to Large Angles of Attack

and Slip.

cf
In these cases, the static value of the moment Lx equals

zero. Applying increments to the variables a, , x' Wy' 6 e'

6r, and 6a and following the usual procedure- for 
linearization

of equations, we obtain the system

p= - zpP O+oo
a -z~a + -+ oax .

zy= -na -n,-na,6,;  (2 . 54)
=-na-n,-n8 x=-x- a1 -
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where I =m 0 (PI- 3al) + m,.;

i= mao (32 )- m,8.0

= eanz;

(the increment symbol before the variables is omitted for brev-
ity).

Figure 2.5, a and b, presents structural diagrams of the
equation system (2.54) for the basic operating modes after
Laplace transformation with zero initial conditions (see Sec.
2.4). Thus, using equation system (2.54), we can obtain various
transfer functions with consideration of cross-couplings between
channels for use in study of the closed-loop control systems. /5
Other approaches to evaluation of the effects of cross-coupling
on the dynamics of vehicle motion are also possible within the
framework of the linear theory. For example, conversion to
cylindrical coordinates is recommended in [22], since their use
makes it possible in many cases to take account of the basic
couplings in the vehicle's three-dimensional motion in quite
simple form ("crossflow" and kinematic and inertial couplings).

Let us turn to linearization of the equations of motion
for ballistic missiles and rocket boosters. As we noted in
Sec. 2.2, the Coriolis force and moment FC and M C and the force

and moment that arise as a result of the mobility of the liquid
in tanks, FZ and M must be introduced into the dynamic equa-

tions of an ASV regarded as a rigid body (2.5). In addition,
Eqs. (2.18) for the generalized coordinates qy and p., which

characterize the position of the free surface in the v-th tank,
must be attached to system (2.5).

Everything that has been said concerning separation of the
vehicle's motion into lateral and longitudinal motion and of
the latter, in turn, into long-period and short-period motions,
also applies in the case of ballistic missiles.

Using the procedure for obtaining the linearized equations
(2.36) for a rigid vehicle, we obtain a system of linearized
equations of short-period motion for ballistic missiles and
rocket boosters in the following form:

mVa6= Fa aa+ FOeA+F + Fla+ -
N -. (2.55)
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Jdh'= Mda+ M; Aa MIF+ M zA
N N

- Riq -YR,,,;
v-l vm ; (2.55)

q, +- q,+ 2q,= R,, VAG + R," -4 A-

Prom this system, we exclude the angle 6; neglecting the small /59
luantity. F A 6 and omitting the symbol A for simplicity of nota-

;ion.and using the nomenclature presented previously, we obtain
I system analogous to (2.38) in the form

a za -R,+ (V- = - ze.

N (2 56)

-1

W' +E, , +q= - a (R , ti, , e8,

- R, (Wox- K.) 8-

As we noted above, the lateral motion is described in the

,ase of axisymmetric vehicles by a system consisting of two in-
lependent equation systems - in the yaw plane by a system anal-
>gous to (2.45), i.e.,

v-l

N 1(2.57)
0y,+np,,+np,+ n,w , R,;q,=na r;

q, + s,l + ,q,= - R,; f.Ol -

-Rvz Vox 9X) '

There ~=mU

ind a system describing the motion in roll:
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N

cOv (2.58)

2.4. TRANSFER FUNCTIONS OF THE AEROSPACE VEHICLE AS A STATION- /6
ARY OBJECT OF CONTROL

2.4.A. Comparison of Solutions of Stationary and Nonstationary
Equations. The Principle of "Frozen" Coefficients

In the general case, the solutions of the stationary andnonstationary equations can be compared, because of the com-
plexity of the latter, only with digital computers. We shall
therefore confine ourselves to a partial analysis with re-ference to the case of the rather simple second-order equations
to which, as we noted above, the angular motion of the vehicle
and certain other dynamic relations in the longitudinal motion
can be reduced.

Let the second-order differential equation be written inthe form

Ty + 2T+ (+-2) Ty (t) =x (t) (2.59)

and let it reflect, for example, the equation of angular motion
of a vehicle in which y is the angular coordinate and x = M isthe disturbance moment. If the coefficients of Eq. (2.59) are
independent of time, i.e., constant, the equation is said tobe stationary. When a unit-pulse disturbance is applied at theinput of the system described by Eq. (2.59) at time to, i.e.,

x=81--to', (2.60)

it triggers a response known as the stationary weighting function

y=g t-to]. (2.61)

It is convenient to introduce the biased argument T = t-t with
the origin at t = to as the time reference, since then the
stationary weighting function g(T) will be a solution of theequation

(s) +:2nj () + (n+ )g ( ) = 1 [. (2.62)

This solution is easily obtained by known methods in the form
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In a somewhat different notation for the coefficients of Eq.
(2.62), namely:

Tg (t) +2 (1 +aT) g( () + [(,2 + 92) T+ 20 g (c)= 6 [ (2. 64)

where

S - ; (2.65)
T

i O1/P,-1 (2.66)

the notation for the solution is modified accordingly:

S)e sin T_ *-- 1 (2.67)
1/'S2272 1 T

but it remains stationary because it depends only on the one biased
argument T and does not depend on the time t0 of pulsing.

Let us now compare the stationary weighting function g[T)
written in the form of Eqs. (2.63) or (2.67) with a nonstationary
weighting function of the form

g [ ) sinQ .. (2.68)
9 (to + T)

Here the criterion of nonstationarity is the dependence on two
arguments - T and t0.

Let us establish the form of the differential equation whose
solution for a unit input pulse will be the nonstationary weight-
ing function (2.68). For this purpose, we rewrite (2.68) in the
form

(to-)g 0- _ e-" sin oP, (2.69)

differentiate once with respect to T:

g+(to t)= - o (to -. ) + e- " cos (2.70)

and differentiate again:

(tof ) +2g= -o g + to+[ , % ]-g- /62

- e-cosL-tr [l]. (2.71)
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The pulse appeared in the right member of Eq. (2.71) on dif-
ferentiation of the function f[I)-=e-cos2r, which equals zero

when T < 0 and has a unit jump at T = 0. Let us express f(T)
as a funtion of the other terms in (2.70) and substitute it in-
to (2.71). We then obtain

(to+) +2 [I +(t t+)J) g f [(o2 2)(to f+)+
+2,, g= []. (2.72)

This equation has variable coefficients that depend on the time
tO + T = t, and is therefore said to be nonstationary.

Its solution (2.68) was used to write the equations, but
the converse problem, with which it is generally .necessary to
deal, is immeasurably more complex. Recourse is therefore
taken to approximate solution of the nonstationary equation on
relatively short intervals of variation of the biased agreement
T, substituting the equivalent stationary equation for it. One
of the most common substitutions consists in "freezing" of the
variable coefficients, i.e., fixing their values at the begin-
ning of the interval at T = 0 and extending these values over
the entire interval from T = 0 to T = Tmax*

max

Applied to the nonstationary equation (2.72), the stationary
equivalent will take the form

toa [T)+ 2 (1+ ato) IT) + [(a + 22) to + 2a] g. T)- = [T].  (2.73)

The analogous equation (2.64) has already been prepared, so that
its solution (2.65) can be used as the answer in finding the
pulse response of the equivalent system given by Eq. (2.73):

S- -- 1sin (2.74)g IT) = Vt212 - 1 to

Let us now compare the exact and equivalent solutions described
by (2.68) and (2.74).

Initial values
gIo,,,)-- -3I ; g,[o --
=g 0Ito). - .0

Characteristic frequencies

t1 460
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Damping conditions /63

S-(+ ) (2.75)e '0 e
to + t to to

We see from the comparison that the initial values and the fre-
quencies move closer together at values of the product Ot0 that

are sufficiently large compared to unity. The damping conditions
are described by functions that have the fundamentally different

I 1cofactors and -e -, but the additional damping in-
to+ T t

troduced by 'the varying denominator in the solution of the non-
stationary equation is offset to some degree by the increase in
the damping decrement in the stationary equivalent, as can be
seen on expansion of the two solutions in series:

1 1 T r2  T3

to + _ to t t 3

T+ 2 .3
__e ' 3

= ..
to to t2 21t. 3tt4

with attention to the first terms.

The convergence of the nonstationary and equivalent station-
ary weighting functions also ensures similarity of other response
forms, since the weighting function serves as the kernel in the
equation of convolution with any input disturbance.

Thus, a harmonic disturbance causes a response whose steady /64
part is proportional to the frequency response and an important
index to the dynamic properties of the vehicle, including its
stability.

If the variable parameters change only slightly during one
(or a few) oscillations, it is admissible to substitute the
stationary equivalent for the nonstationary object. With time,
however, an increment that must be taken into account may ac-
cumulate, even if the parameter variation is slow. In this case,
several stationary frequency responses must be asigned for the
nonstationary object, each of them equivalent on a certain time
interval. In more general description of stationary systems with
the aid of transfer functions - just as in the case of the fre-
quency-response curves - equivalence to the nonstationary object
with a given tolerance can be obtained only on a limited time
interval. If the tolerance is exceeded, it is necessary to
assign several transfer functions - each for a definite time in-
terval.
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2.4.B. Conversion to Transfer Functions

Transfer functions can serve as exhaustive characteristics
of an aerospace vehicle as an object of control if the principle
of linearization of the initial equations and conversion from the
nonstationary system to the stationary equivalent are possible.
These conditions are valid for the angular motion of the vehicle.
Let us consider the angular motion in the form given by (2.59),
but endow the input and output coordinates with more general
connotations. Let the disturbance be given by an original func-
tion; then the response of the previously undisturbed system
would also be an original function, and they can be written as
the respective Laplace transforms:

x [t)= M V)4- X (s); (2.76)

S[I)= It) . Y (s). (2.77)

For the above transforms, Eq. (2.59) becomes the operator equa-
tion

(a2s" + as + a) Y (s)= X (s), ( 2.78)

whence the solution is to be sought in operator form /6_

Y (s)= \V (s) X (s), (2.79)

where the transfer function is

W(s)= (2.80)a2s2  + s+ao

It will be more convenient to write it in the standard form used
for the linear elements of automatic control systems. Here we
can convert from the transfer function in the notation of (2.80)
to one or two different types of elements, depending on the signs
and relative magnitudes of the coefficients ao, al, and a2 , which

determine the nature of the transfer-function poles.

If all coefficients ai (i = 0, 1, 2) are positive and

a < 1,
2 a0

the transfer function has complex conjugate poles and corresponds
to the standard oscillatory element

T2s2+2Ts+1 ' (2.81)

where k=-- is the gain (transfer constant) of the element,a0
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T= /2- is a relative time constant, and a_ at <1 is the
S-ao 2 a6

rela tive damping factor. The poles of transfer function (2.'81)
can be, stated ifi terms of the coefficients introduced above:

" -=+ / : - ] -e= ' (2 82 8 ), 2
r T Tr

When > 1, the function (2.81) will 'have two real poles:

/66
-a +1 a' -Iaea2 - : I/

2a 2  T (283)

-al -V- 4aoa 2  - -2- j
2a 2  T

and can ,be ,written in one of the following forms:

W (s)= k/2
e s+ - fs+
T T T T

A (2.84)
T2 (s - l) (S 2)

k k

2T I12i 2T VTi Tw (s) -
8 reV 2-1 E+V2-1 ' (2.85)

s+ s+
T T

The first form (2.84) corresponds to cascaded (series), connection
of two aperiodic elements; the second form (2.85) represents the
equivalent parallel connection of two aperiodic elements having
the time constants

T and T

E + V2 - 1 - 2 -

and the gains

k2=

2 [E Ye - 1 + (2 - 1)]

With the above nomenclature, Fig. 2.6, a-c, shows various
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k 77structural diagrams: for a vehicle in Z61

ls +71 angular motion in accordance with

a) (2.81), (2.84), and (2.85). Differ-
erent values of the relative damping

S___ factor correspond to changes in the
TT+ + aerodynamic configuration of the

b vehicle and flight conditions. At

high flight speeds in dense layers of
24- the atmosphere, the dynamics of a

vehicle with developed tail surfaces /68
in the yaw and pitch channels is
described by the transfer function
of two aperiodic elements (2.84) or

c) (2.85), i.e., the condition E > 1
A__ is satisfied. In the rarefied at-

s2+ 2 ( mosphere at greater heights, the
d) damping factor decreases and the

vehicle in angular motion at E < 1
* I is described by the transfer function

TE- T2s+l of an oscillatory element (2.81).
e Under the conditions of flight in

space, or in the atmosphere when the
Figure 2.6. Transfer vehicle has weakly developed tail
Function of Vehicle's planes, there is practically no
Angular-Motion Loop damping (E = 0). The dynamics of
Represented as Combina- the vehicle's motion is then de-
tions of Standard Ele- scribed by a transfer function of
ments. a) Oscillatory the conservative-element type:
element; b) two aperi-
odic elements in series;
c) same in parallel; d) W(s)= k k2 (286)
conservative element; ( 2s2 + I s2+ '
e) stable and unstable
aperiodic elements in where Q = 1/T is the natural frequency
series. of the undamped oscillations in the

angular motion of the vehicle (see
Fig. 2.6d).

If the aerodynamic layout of the vehicle places the center
of pressure forward of the center of mass, as is characteristic
for designs with vestigial tail planes, the coefficient a0 in

Eq. (2.78) becomes negative and the transfer function assumes the
form

w(s)= k- (2.87)
a2s2 + als - ao  T2s2 + 2tTs - 1

Then one of the transfer-function poles
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T
S(2.88)

(the first one:) is positive, so that the transfer function can
be represented in the form of the product of transfer. functions
of stable and. unstable aperiodic elements:

/69

W(s)= (2.89)

T T

or in the form of the algebraic sum of the transfer functions of
the same elements with appropriate gains:

k k

S V(s)- 2TrE2 + 1 2TrE2+ 1. (2.90)___= •(2.90)
+ + V-t E+l f+,-e

s+ s
T T

Figure 2.6e shows a cascaded combination of the two elements
whose transfer functions appear in (2.89). The conversion to the
parallel scheme can be made by analogy with the schemes shown in
Fig. 2.6, b and c.

2.5. TRANSFER FUNCTIONS AND STRUCTURAL DIAGRAMS OF AEROSPACE VEHI-
CLES

Here we shall examine more complete structural diagrams of
various classes of aerospace vehicles, using the "frozen coef-
ficient" principle and the Laplace transform. We apply the La-
place transformation to the linearized equations (2.38), which
describe the longitudinal motion of a winged vehicle, so that we
-obtain the structural diagram of Fig. 2.7a). We determine the
transfer functions with the.aid of structural transformations of
this diagram [25, 26], combining severalelements into general-
ized elements (Fig. 2.7b), from'which we obtain

(zt , ( Tjs + 1)

. (s) Ts2 2 2 T2s+1 ' (2.91)

, a(s) k 3 (T 3 s+1)
" s-. z , (s) Tls+ 1 '

where
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kl= nil z, -nZ ne - n; Z le
n, + nz , n,-r n, z

1 n,+n f+,
2= E2 n ; 7

k na + n ,za, 2 n 3 nz~Z

Sgiven in Appendix I ( Figs. I.1 and
- + n-" 21.2).

Flight-vehicle transfer func-
tions in the longitudinal plane for
long-period and short-period motions

a) (complete functions with considera-
S (A ~(T+ ) (tion of the gravity component and

S+2simplified functions without this
component) are given in Appendix III

. (see Table III.1).
b)

Applying the Laplace transfor-
Figure 2.7. Structural mation to the linearized dynamic /71
Diagrams of Winged Ve- equations of the vehicle's lateral
hicle in Longitudinal motion with zero initial conditions
Channel. a) Original; (2.46), we obtain the structural
b) transformed. diagram shown in Fig. 2.8a. With

structural transformations, we
obtain the transformed systems of

Fig. 2.8, b and c, in which the series of elements forms transfer
functions of the type

5 s (s) k1(Tis+1)
Br (s) Ts2+2 2 2 s+ 1 (2.93)

w _ ox (s ) =kr T3S + 1
/ (s) Ts + 1

where

k== ; T = -- ,
np +n it. It/72

n. + It

n_ _ p " ,.
n,= + n 2 -Vnp + n;

ks np+nT, '1t
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a)

Figure 2.8. Structural Diagrams of Winged

bb) and c) transformed.

T2'S+24 JIJS 7 +f

c)

Figure 2.8. Structural Diagrams of Winged
Vehicle in Lateral Channel: a) Original;
b) and c) transformed.

+ M

noP

Figure 2.9. Structural Diagram of Bal-
listic Missile With Consideration of
Sloshing of Liquid in v-th Tank.
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Appendix III (see Tables 111.2 and 111.3) indicates lateral-
motion transfer functions.

The transfer functions of a ballistic missile can be obtained
from the system of linear differential equations (2.56), (2.57),
and (2.58). We apply the Laplace transformation to (2.56) and
build the structural diagram for the motion of the missile in the
longitudinal plane (Fig. 2.9).

We see from this structural diagram that it incorporates in-
ternal loops that take account of liquid sloshing in the tanks
(for the v-th tank in the diagram). In Fig. 2.9, these loops /7
are enclosed in the dashed.rectangle. Structural diagrams for
lateral motion and roll can be obtained in similar fashion.

If liquid sloshing can be neglected in the dynamic proces-
ses, the following ballistic-missile transfer function can be
derived from Fig. 2.7:

4 (S)= 4 (S) ki(TIs + 1) (2.94)8e( be (s) S (T2 2 + 2r2T s 1)

The relations for calculating the parameters of a ballistic mis-
sile are identical to (2.92).

If the effect of gravity is taken into account, the ballist-
ic-missile transfer function assumes the form

W1( 9(s) = k1 (TIs + 1)
S e(s) s(T2s2+2 9 s + 1)(T 3 +1) (2.95)

The numerical values of these ballistic-missile parameters
are presented in the form of plots against time of flight t
(see Appendix II, Fig. II.1, a and b). It is seen from Fig. II.lbthat the constant T3 is negative. This is explained by the in-

fluence of the force of gravity, which tends, as the missile as-
cends, to increase its deviation from the original trajectory.
The presence of the unstable element with time constant T3 in

dicates the instability of the motion of an unguided ballistic
missile on its trajectory.*

*See A.A. Lebedev and V.A. Karabanov, Dinamika System Upravleniya
Bespilotnymi Apparatami (The Dynamics of Pilotless-Aircraft Con-
trol Systems). Mashinostroyeniye, Moscow, 1965.
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CHAPTER II1 /74

ANGULAR-MOTION CHARACTERISTICS OF THE AEROSPACE
VEHICLE AS A STATIONARY LINEAR OBJECT OF
CONTROL IN RESPONSE TO STANDARD INPUTS

3.1. RESPONSE OF UNGUIDED AEROSPACE VEHICLE TO STANDARD INPUTS
APPLIED IN ANALOG FORM

3.1.A. Case of Strongly Damped Motion

We stated in Sec.2.4.B that the relative damping factor 5
exceeds unity in the case of a developed tailplane design,
high speed, and high atmospheric density. In this case, the
transfer function of the vehicle in angular motion can have
two real poles [expression (2.83)] and can be assigned with
(2.81).

Let us rewrite it in the form

W(s)= k ( 3.1)
Ss-1 s-2 T2( 1- 2) (3.1)

For an input disturbance given in the operator form X(s), the
transform of the reaction is

[ x (S) X (S) k 2( 1  ) (3.2)
L s--B s-I T2(01-§2)

We take the quite general rational-fraction form for the
transform of the input process:

X( U(s) U(S) U (s)
X V(ss= - (3.3)

which covers most input-disturbance types encountered in practice.
The poles aZ (Z = 1, 2,... m) of the input disturbance may be /75

real, complex conjugate, simple, and multiple. For our initial
analysis, we introduce a natural limitation, assuming that the
poles $1 and 82 of the transfer function do not coincide with

any of the poles az of the input disturbance.

Using the general notation X(s) for the transform of the
input disturbance and the detailed representation of this dis-
turbance in the form of (3.3), we convert on the basis of the
expansion theorem (using the method set forth in [26]) from
(3.2) to the expanded transform of the response:
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(S)= __k X (P) X (02) I (a,) X (a)+

i--

+ L rs-a au rir (3.4)

The first group of terms on the right in (3.4) contains the
poles B1 and B2 of the vehicle's transfer function and the nu-
merical coefficients X(B1) and X(B2) obtained on substitution of
concrete values of the poles B1, 2 into the input-process

transform in place of the argument s; it reflects the vehicle's
natural motion Y nat(s):

Y = k X (0) SX (P)Y - - T2(i- ) L s- s-p, (3.5)

Converting back to the originals from the transforms on the
basis of the inverse Laplace transformation, we obtain the gen-
eral form of notation for the natural motion, which is valid for
any type of input disturbance:

na[t)=k X (0) exp ilt- X (2) exp (3.6)n t T2(-P) (3.6)

The second group of terms on the right in (3.4) contains the
poles aZ of the input-disturbance transform and reflects the

forced motion Yfor(s). Among the total of m poles of the input
disturbance X(s), we distinguish multiple poles ak, which form /76
K groups with order of multiplicity rk + 1 in each group and
nonmultiple poles ac (1=1, 2,3,...,j), 'for which ri = 0, so that

~m=+( )=$ " T (3.7)
j+1 k-f+1

where j is the number of nonmultiple poles and p is the number
of different poles (p = < m).

-i- -k-
The coefficients of the expansion X(a,),X(ak) are obtained

from the transform .(3.3) by striking out the respective polynom-
ials s - ai and s - ak in the denominator, i.e.,
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-I-
X.(ag) (1))

,, . (s - at-1) (s - a+). .. (s- a) H (s- a.k)k+l
(A)

U (ai)
V' (a) ' (3.8a)

-R-

X (a,) U (ak)

v, Hf (s-a)... (s- a,_-l)k- 1+t X
(i)

X (s-ak+1) k + ... (s -a)

rkl U (ak)

- V(a) (3.8b)

It is shown in the right-hand sides of (3.8a) and (3.8b) how the
operation of canceling, polynomials is replaced by the equivalent
operation of differentiation of the denominator V(s).

We write out separately the second group of transforms in
(3.4):

+ , (S) (-A- ( a
SW(a)x () )](3.9a)

(1)

I rl 0ar (a- x)(rA-P2)(s-a) ) k

() r-rk

We now convert to the original of the forced motion:

(i)
A ) a a ,) exp (at)+

_!L [W (a -k(a)ep(at)] (3.10a)
(M r-r k
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or

-1-
for k X (ax(l)

TO (a, - ?I) (a - 2)
(1)

-A-
1r Oa' [ x (a) exp (at)
rl oar (a-P)(a-,) -r (3.10b)

It is seen from (3.10, a and b) that the partial processes
exp (a it) in the input disturbance also remain in the vehicle's

response, and that the transfer function of the vehicle affects,
only the partial scales. Moreover, in the multiple-pole case,
when the parameter ak is differentiated to separate the cofac-

tor it(l=1, 2... rh, functions t'exp (aht) with exponents Z < r k that

were not present in the input may appear in the response. Let
us give a detailed illustration of the application of (3.6) and
(3.9) to specific examples that are important for aerospace
vehicles.

Vehicle weighting function

Since the input-disturbance poles ai and ak are absent for

X(s) = 1, the second group of terms in (3.4) vanishes and /78
(3.6) can be used directly; hence

g [= [exp Pt -exp Pt]. (3.11)

The transforms and original of the weighting function for
the expanded expressions for the poles in (3.5b) will be

a (s) k_ _- I +_ _-_

2T )'T2- +V _1

(3.12)

s+

i)= e-ep [ e xp(-1+ )

58(313)
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With the poles given by (2.88), among which there is one
positive pole, the analogous solutions will be written

kG(s)=

T

2T 2+1 T

s-

ex[exp xp (3.15)

In Table IV.1, the first line contains the expressions de- /79
rived for the transfer and weighting functions. Also indicated
are certain supplementary forms of notation using the time-

1 1
constant nomenclature T--- and T,--

P1 P2

Transient response

The transient response h[t) is the response to a unit
step input l[t) that is constant in the interval from t = 0+ to

t = -. As the vehicle moves, a constant disturbing moment may
arise as a result of warping of the tailplanes, other constant
structural-shape distortions, and thrust imbalance. If at the
same time speed, thrust, and air density remain constant, the-
moment that arises from these causes will also be constant.
Variations of speed, density, and thrust will, even if the /80
structural deflections remain constant, cause an increase or
decrease in the disturbing moment.

It is convenient to convert to the step function from the
exponential function

e (t)= e=exp it, (3.16)

by putting n = 0; then

1 [t)= lm elt. (3.17)
r,-0

If n > 0, relation (3.16) takes account of the moment increase;
if ri < 0, its damping is as indicated in Fig. 3.1a.
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The transform for the input
(3.16) will be

X('s)=E(s) (3.18)

-We prepare terms for substitution

0 t into (3.5a):
a) 1 1

For substitution into (3.10b),
we find

-I- -I-
X(a)=X(1)= 1,

b) where i = 1 and a = al= . Combining

Figure 3.1. Conditions the results obtained after substitution
of Transient-Response of the elements into relations (3.5)
Excitation. a) Exponen- and (3.9), we obtain
tial and step inputs;
b) transient responses 1
for negative and one T2(P -1 2) (01 1) )-1)
positive poles of vehi- 1 1
cle transfer function. ( 82 )(s) J -- ( (3.19)

It is easy to convert to the original
from the transform HE(s):

kE [) k r exp Ol exp p2t P-1 # exPn 2.

2 (-- 2) -- 1 2 - (F- ) (-- 2) " (3.20)

If n = 0, the original will be the transient response /81

k )-exp,1( 
3- -expl1t )

2 - 2) ( 2 1 (3.21)

We write the transient-response transform in greater detail
for negative poles 81, 82 assigned by relations (2.82):

1 1

s+- (E + p /2- 12)k T
2 (/2-1 -- 2 -1

1 _ 1 - (3.22)
s 1

-- + 0 2- 1

60



and the corresponding original

k 1-exp(- - 2--I)k T

T (3.23)

- + E2 -i

In the case of unlike signs of the poles, F,>O, P2<0 , the
transform of the transient response and its original take the
respective forms

1 s
s-- (Y'/ + 1-- )

H (s)= k t

s 1
s++ -(2+1 +) (3.24)

[ t /82
exp(l/F+ 1-) -- 1-- -

k T

hI)= 2+1 2E2+1-8

1 - exp ( - f- +- )

+ (3.25)

Standard transient-response plots appear in Fig. 3.1b.

Response to linear and power-law variation of moment in time

The power-law dependence on the time tv has the transform
vi
(s)=+ (3.26)

It will be convenient at first to consider the more general func-
tion

X (s)= - t'en', (3.27)

from which the conversion to the power-law function is made by
substituting n = 0.

To determine the response to the input of (3.27), we shall
use relation (3.4), into which the following series coefficients
must be substituted:

61.



x (p,)= I -

S2- (3.28)
-k- --

X (a,)= X (T) = V!,

where k=1, ak=1, r=v.

The response transform for the transfer function

kW (ak kT21 2 + 2ET + 1

is obtained after substitution in the form

kvi . 1nE(s)= -(h--) ( -- )--

1 _ (1-I

0~2V)'+1 (s-P2) 01' T2+2~T + s-l (3.29)

whence follows the original

IE kvt exp~it expP2t
S T2 (p- 2 )l ( - )'+' ( - )'r +

8' / exp t (3 30)
- ' 2 ( 2ET +130)

The second term in (3.30) reflects the forced motion Hfor
for

We write it in expanded form, using Leibniz' theorem for dif-
ferentiation of the product:

llEfor [t)= el' 11'W () + vt'-'W' (Ti)+

1v (v- 1) '- 2W,,(f)+ -f W(') (7). (3 31)

In the case of a power-law input disturbance (3.26), relation
(3.29) yields the transform of the function with 1 = 0:

k! 1 1+
T2(k:-- P2) P1+I (s- 01) Pv+(s-P2)

(3.32)
d' k 1

S ' T212 + 2 Tj + 1 s -
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while (3.30) yields the original

kv [ exp~ 1t exp 2t ]+

k expt (333)
0 (' T21 2 + 2Tq + 1 1,

and (3.31) the forced motion

S(V- ) w"()+--. /84
r fo (t) t'W (o) v('-'w) (o)-- 1.

... + W()(0). (3.34)

We determine the derivatives of the transfer function W(n)
with n = 0 by continuous division of the numerator of W(r), i.e.,
k, by its inverted denominator, which gives

k 1+2eT + T212

(-2T - T212)k [1 - 2ET + 4 (2 - 1)T212-

[(42 - 1) T212 + 2ETa38] k - 4 (2E2 - 1) T31a +

[- 4 (2E2- 1) T 3- + (164 - 12e2+ 1) T414 .. ] k.

- (4J2 - 1) T414] k

Since the quotient must be identically equal to the; Maclaurin's
series

W c W(o) + W ('(0)q + ,,, W (0)' + ... ,
2(1 )= (0)W((3.35)

we obtain on equating the coefficients at like powers of n

W(0)=k;

W'(0)= -2ktT;

w (0) = 4k (-1) T,
21

W" (o = - 4t (2t2 - 1) TO;

W" (0) = -k(16 t4- 12e-+ 1) T.
41

After substituting the calculated values of the derivatives

into (3.32), the latter assumes the form
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ror, It)= k Ir' - 2,Tt'-' + 4 (W - )T 2X

Xv(v+1)t'-2+ . . .]. (3.36)

Relation (3 .3 4) can be rewritten

fo [ (0) x () + W' (0) +x ( W) 10) x )+ () + ( 3 37)

The form of (3.37) is retained irrespective of the number of
terms in the description (3.27) of the input disturbance.

Various forms of representation of the natural and forced
motions are given in Table IV (p.190) for the power-law input
function. Regardless of the nature of the transfer-function
poles (pp.190-195),the formulas for calculating the forcedmotion
are identical and we may use any of them at will or the univer-
sal forced-motion formula (3.37), which is valid for all columns
and lines of the table.

Response to harmonically varying moment

Let us consider a sine-wave input of frequency w and unit
amplitude, i.e.,

X (s) 4 sin ot,(3.38)
s2 + .2 (s- j) (s +j) * (3.38)

and substitute it into (3.4). For this purpose, we first evaluate
the coefficients of the expansion in the natural motion

X (1)= " ; X (~)=

and the forced motion
-1- -1- o 1

X (a)=X(j)= + e .

-2- -2- t 0 1
X (a)= X (- )= - =

a2- J - j2 2j

where ai=j, a2=--jv are the poles of the transform of the input

disturbance (3.38).

Using these coefficients, we obtain

r(s) T2(- ? +2) -- P1 .2 S-P2

SI r (j) 6(-O4] (339)
2j Ls-jo s+jo
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We operate with the transform of the forced motion separately: 
/86

Ss(W (jU) - I (-- ji,)1 + j, [w (jW)+ w(- J)l =
S2j (s2 + W2)

s Im W (jo) + (o Re W (j.,) (3.40)

s2 + 02

where we have separated the real and imaginary 
parts of the com-

plex transfer function

W (j)= Re W (jo) +j Im W (j). (3.41)

Simplifying (3.40), we obtain 
/87

rIFor(s)=jW(j) ssin+.Ocos ,(3.42)

S2 + Im (j)

S" " - ol w= where c= arctg Ie W(j) (3.3

We now convert from the transform

(3.39) to the original:

r's+z2 rs-11 Kr/T'2 +z2rst
at s=w at w r [t)= k exp )t exp2t +

T'01-§2) pl +2 P2 + .2

Figure 3.2. Gain-Phase Fre- I W(jwo)Isin(t -).

quency Characteristics Cor- 
(3.4)

responding to Second-Order

Transfer Function With
Various Values of the Para- The first group of terms

meters. determining the natural motion

has already been analyzed in the

preceding examples, but with a

different scale.

The second term characterizes the forced 
motion, which is

a harmonic oscillation of the same frequency 
as the driving mo-

ment, but with a different amplitude and 
a different phase.

These 'parameters of the oscillations are fully 
determined by the

gain-phase frequency characteristic
k

JW ) (3.45 )
j2ETw - w2T2 (3. 145)

Figure 3.2 presents hodographs of the functions W(jw) 
on the

complex plane as the frequency varies 
from w = 0 to w = for

positive and negative values of the last term +1 in 
the denomi-

tor of (3.45).
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Figure 3.3. Logarithmic Frequency Char-
acteristics Corresponding to Second-
Order Transfer Function.

The variations of amplitude and phase as functions of fre-
quency are indicated separately on logarithmic frequency charac- /88
teristics (Fig. 3.3).

The inflections of the asymptotic logarithmic frequency
characteristics occur at the conjugate frequencies

V0= - ___ .

W +V-- (3.46)

for two negative transfer-function poles and at the frequencies

e + &2- (3.47)

for poles of unlike sign. Formulas for calculation of responses
to harmonic input disturbances appear on p. 191 in Table IV.1.
The last line on p. 195 contains the same formulas but with a dif-
ferent symbol for the frequency, w = n.
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Response to oscillating moment pulse

Figure 3.4 shows a form of pressure variation that is en-

countered in practice in the combustion chambers of vehicle re-

action engines, in the form of brief oscillations that build up
initially in uneven running and then damp out. If, in addition, /89
there is a thrust imbalance, the disturbing moment acting on the

vehicle will also vary in proportion to this curve.

This curve is approximated
rather closely by the function

x(t) x()=Pe-' sin ot, (3.48)

which we shall call an oscil-
lating pulse. In choosing the

V l approximating function, it is
recommended that the exponent
a be matched to the descending
branch of the curve, and that

7 the cofactor exponent be ob-
tained from the formula given
in [25]:

Figure 3.4. Oscillating Moment
Pulse. v=aTq- 1,

where T is the abscissa of the

center of gravity of the oscillating-pulse envelope.

The transform of the complex function (3.48) can be obtained

from the known transform of the sine wave (3.38) by the following

operations in the transform region:

X (s)= ( - 1)' -3 . (S)
(s) + +((s + )2 +2+) , (3.149)

Differentiation has been carried out in the right side of

(3.49), with the result that it has been possible to write its

denominator in general form and the following functions have been
obtained for the numerator, depending on the multiplicity of dif-
ferentiation v:

v=0, Uo(s)= 1;
v= 1, U (s)= 2 (sf o);
v=2, U, (s)= 2 [3(s+- o. 2 ]; (3.50)
v= '.P. J 3(s)=24(s+a)[(s + )2 -- l1 . . . etc.

To use (3.4) to calculate the response to the input given by
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the transform (3.49), it is necessary to prepare the coefficients
of the expansion first for the natural-motion components:

X(0) 'U. (0) . X( . .. (2)
1(P1 + a)2 + o2]j+1  

(102 + a)2 + -. M]+1

then the transform of the natural motion will be

t (s) u u- 1 P
T(s ~- 1_ [( + 0)2 + 2]' ' s- l

U,02) 1 1 . (3.51)
[(P2+c,)2 + w2j S-2 (3.51)

From this we obtain the original written in the form investigated
previously, but with more complex coefficients in the partial
functions (exponents):

q t , U, (BP)exp Pt
n t2 (1-- 2) [(l + a) 2 + 2jv+1

U, (82) exp P2t (3.52)

[(02 + )2 + ,21,+

In calculating the forced motion, it must be remembered thatthe transform of input (3 .49 ) contains two different roots:

a=a= -a-j-j, a*= -a-j=a,

and can be written in the form of the product

X (s)= lu, (s) = f, (s)
[(s - a) (s - a*')]+ 1  (s + a - j )'+ (s + a + jw),+1

(3.53)

Thus we have for k = 3 and 4, ak = a, and rk = v

-a- ) U, (a)
X a) (a-a*)'+'

-4- ,wU (W*)x (a -(a* - a)'+l

Then the transform of the forced motion, which contains two terms(k = 3, 4) will be presented in the form
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Q fo(s)= a .*)'+(s- a)+

/91

01 U, (u*) W (tr ) 1
+f ( )i (3.54)

Since the poles a and a* are mutually conjugate, so are both
terms in (3.54), and their sum equals twice the real part of the
first term or twice the imaginary part.of the first term multi-
plied by j, i.e.,

20 Im a, iU, (a) W (a)
v t Oa (a- a*)"+ 1 (S- a)

In differentiating, it is helpful to use Leibniz' theorem for the

product of the two functions and U,()(a)
(a - a,),+1 s- a

To separate the differentiation sign from the functions, we
introduce intermediate nomenclature for the first function

1 =1 (3.56a)
(a(- a*)' + !  - + '

where

v=a-a*=j2w. .(3.56b)

We can then substitute in (3.55)

a = -L+- (3.56c)

and rewrite it in the form

Qfor(s)= d dm--- "

[ jU, (a)W (a) 1 (3.57)
(s - a) 7+ -+j
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Converting to the originals, we obtain

U, (a) W (a)a)W(a) U, (a) W (a) exp at,s-a

and write the derivatives of this function with respect to a as /92
follows:

[k (a) W (a)exp a] = exp at( (t +-_ )k U, (a) W (a).

Consequently,

for t)= 2wexp(- Im exp (jwt) (+- +

S , (a) W (a) (3.58)

We then write the forced response in the form of a polynomial:

qfor t)= 2aexp(-at) [tF,+
vi

We determine the function F from (3.58)

F,= am exp(jf)U(-- + ) W(-a- + Jw)

ReIm [u, (- a + j)W(-- a + jw)]

In its entirety, the first term of polynomial (3.59) will be

qv,[t)-- I (I ×(2w)'v! ( .
(3.60)

X+e-sin(t-



Thus, the forced component of the response will contain 
the

input-disturbance function with different amplitude and phase

and, in addition, v additional terms with exponents t from v - 1

to 0, but with the same frequency and damping coefficient as

the exponential function. Each of these terms has its own scale

(amplitude) and the corresponding phase.

Table IV.1 (p-.191) gives the components of the natural /93

response to the oscillating pulse separately for each type of

transfer-function pole, and the forced part of the response is

shown in the form common to columns 2 and 3.

3.1.B. The Case of Medium- and Weakly-Damped Motion

The damping factor is characterized quantitatively by the

parameter 5. The present case corresponds to values of E in the

range 0 < E < 1, which results in the appearance of complex con-

jugate poles 8, 8*, which are defined by (2.82) in the vehicle's

operator transfer function. Since relation (3.4) takes account

of all types of poles, all of the solutions obtained for the

preceding case remain valid for the forced motion, so that 
it was

possible in IV.1 to display the forced solutions in a notation

common to both columns in most cases. In specific cases, it is

not difficult to convert from this common notation to specific

transfer functions.

Let us now discuss certain aspects of calculation of the

natural motion.

We rewrite the first term of (3.4) in the form

gnat 3=72 (P -p* sk - p s- *

T' T s-P

From this it is easy to obtain the original reflecting the part

of the response corresponding to the vehicle's natural motion

for any type of input disturbance:

kexp - i X I _t2nat_(t )=  Y- X
7_ VF_ i2 T T

(3.62)

where
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I X - + J

E 1=act2 (3.63)
Re xj -- + J

Here the nature of the input influences only the scale
and phase of the oscillations.

When the vehicle's transfer function is defined by (2.86),
its natural motion in the absence of damping is obtained from
(3.62) on substitution of = 0, which gives

at [1)=ktX(j )s)in ti(arctn (3.64)

where

2 " (3.65)

Having the general formulas (3.61)-(3.65) for the natural mo-
tion and (3.10a) for the forced motion, we proceed to determina-
tion of standard responses for the same specific inputs that were
considered in the first case of Sec. 3.1A.

Vehicle weighting function

Instead of relations (3.12) and (3.13) with 0< <1 , we have
the following relations on the basis of (3.61):

G (s)= k Im

s +---- (3.66)

kexp (- -E4 t (3.67)
g t)= rt/ ._ sin -}1 - E.

In the absence of damping, i.e., for 5 = 0, we have

g [t)= -sin -=k9 sin Bt. (3.68)
T T

Transient response

Instead of (3.22) for O<g<1 We obtain a new expression,
for which we prepare intermediate quantities.

Firstly, we denote by H nat(s) the transform of the natural /95
motiondetermined according to (3.62) for X(s) = 1/s. We then
calculate the coefficient X(B) for it:
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X T )=- = Texp ] (t + arccos E)1.
s o s- + +

Then

H () k Im exp i ( + arccos E)

k Im exp (j arecos e) (3.69)
/Ti __E2 s-

' n T/
The transform H (s) of thefor

Figure 3.5. Transient Res- forced component is found from
ponse of Stable Oscillatory (3.9a), which is strongly simplif-
Element. ied and brought in the present

case to the form

Hfor(S) = W (a)j.-o= W (0)= k.

The general sum of the natural and forced components is writ-
ten

H [(s)=k [- Imexp (j arecs ) (370)H(s)=k I -1 M3

To convert to the original, we transform separately the com-
plex function

S ex p (j arccos )

= exp - +j arcos f 11- )

and separate its imaginary part

exp -E-) sin - Vl- 2 arccos .

Then the transient response assumes the form

H )= 1 - f sin :.s Varccost. (3.71)

For t = 0 we have sin(arccosU)=--/l-V and H(0) = 0. /96
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Figure 3.5 shows the transient response of a stable oscil-
latory element and indicates the period of the oscillations and
the damping conditions.

For = 0, we obtain from the above formulas

H(s)=k (1-m expj 2) =k( -Im J (3.72
(3.73)

H [k)= I - (I - (- cos ).(373)

Response to linear and power-law moment functions

We leave the forced response component in the form of (3.37),
and use (3.61), in which the value of the coefficient X(B) must

be determined, for the natural component. Since X(s)=- V1, we
have

X (P)= v v+1
(-e +- V T-E2)'+

-v I T'+1 exp [j ( + arccos ) (v 1)].

=2 For the natural-motion /9
yt) 4--0 component, this yields the

transform 11 at(s ) =

kv i-" oxpIC [j( + arecOs e) (v + 1)]
- '+ e -I

T+ - T (3.74)

from which it is easy to con-
Figure 3.6. Response of ASV vert to the original
Having an Oscillatory-Element kT vI (
Type of Transfer Function to et)=(-xp -Z-- X
an Input Signal Assigned in E. T
the Form of a Quadratic Func- .sin t
tion. X

(3.75)

Figure 3.6 shows the form of the response to a quadratic
polynomial for the value v = 2 and 0 < E < 1.

For a vehicle transfer function characterized by the value
S= 0, the transform and original of the natural motion will be
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Flat (s)= (- 1)+ I (V+ (3.76)
9 s- jQ

T nt [t)Q cos t -v . (3.77)

This response, added to the components of the forced motion

(3.37) for v = 2 and = 0., is also shown as a separate curve on

Fig. 3.6.

Response to harmonically varying moment /98

If 0<cl in the equation of the vehicle, its natural

motion is determined by formula (3.61), in which it is neces-

sary to calculate the coefficient X(B) for an input having

the transform X(s)== . + 2 We obtain after elementary substitu-
S2 + 2"

tion

X( )= 2

ST T

oT2 exp (j4)

S/1 + 2 (2E2 - 1) 2 72 + o4 T4

where

9= arctan
w2T2 + 2E2 - 1

Now the transform of the natural motion can be presented

in the form

rnat (s)= x
nat ) [1 + 2 (2t2-1) 2r2 + w4T4] (1-E2)

X Im expj , (3.78)

from which the following original is found:

kwTexp - T
nat 1 + 2 (22- 1) ,2T2 + o4T4] (1 -- 2)

2E (3-79)
T s2T2 + 2 2- 1

The transform of the forced motion in the case of a harmonic
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input is still given by (3.42) and (3.43), and its original has
the form

r / ) 2 2 )+427 sin l/-arctan 2T(380)V( - o22)2+42'2 2T2 (3.80)

Figure 3.3 shows the gain-frequency characteristics of the
vehicle for E < 1.

If E = 0 in the equation for the vehicle, the transform /9r
(3.78) in the natural motion assumes the form

- ( k m 102- 2 s j (3.81)

and the original is now determined not by (3.79), but by

r nat[ - k sin t.2-02sin . (3.82)

In the forced motion, the response has instead of (3.80) the form

r [t)= - k2 sin wt. (3.83)

The responses to the harmonic input are written out in Table IV.1on p. 195.

The last line examines the case in which the frequencies of
the forced and natural oscillations coincide - a special case for
purely imaginary poles of the transfer function (column 3).

In this case, the general transform of the response becomes

r(s)= w (s) x (s)= k93
(s + 92)2" (3.84)

Putting a = Jl and y = j20, we can use for the transform with mul-tiple 'complex poles (v + 1 = 2) the expansion formula (3.57), inwhich the product U (a)W(a) should be replaced by

U (a)W(a)= k92;

we then obtain

r(s)=2k1m [( d (s--a 2 J1j2 (3.85)
In the time region, we obtain the original
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r t)=2k23 lm exp(jPt)(t±.--) 4]

or /100
k (si -- cos !L't). (3.86)

The amplitude of the second term on the right in (3.86),
i.e.,

A(t)= k t'2 -t, : (3.87)

increases continuously, reflecting a state of ideal resonance, at
a rate

dA k"dA k .(3.88)
dt 2

The first term in (3.86) represents nondamping oscillations. It
affects the form of the initial segment of the response, but be-'
ginning at a time

20

to=-- (3.89)

its contribution to the over-all response becomes smaller than 5%.

If the natural-oscillation frequencies differ from the dis-
turbance frequency (see Table IV.1, p. 1195), the amplitudes of the
natural and forced oscillations present in the response will
stand in a constant ratio

A-jt (3.90)

which does not depend on time.

In the presence of damping in the motion of the vehicle, the
forced-oscillation amplitude determined from the gain-frequency
characteristic (see Fig. 3.3) and appearing in (3.80) will not de-
pend on time, while the amplitude of the natural motion in (3.79)
has a time-dependent, exponentially damping cofactor. Therefore,
after a time interval

3T
ts5 .= (3.91)

the amplitude ratio of the natural and forced oscillations will be
5% of the initial (at t = 0) ratio of the same amplitudes.
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Response to oscillating moment pulse

We take the input transform in the form of (3.49); then the
coefficient X( ) needed to calculate natural motion from (3.61)
will be

x(,3)= X(x )1 exp [j (p)], (3.92)

where

IXM)l T
+x(B)(+) 1+

{[l(2 +, ) 72 + 2e (e - c) - 1]2 + 4 (aT-- )2(1- E)2} " (3.93)

S()=arctan Im U
ReU ()

-(v+ 1)arctan 2(OT- E) ---?)
(a2 +( 2)T2+2 (E- ar)-- 1 (3.94)

The natural motion in transform notation will therefore be

Qmt (s) = k I- M exp[ (p) (3.95)

which has the original

tt)= - exp- -sin r -+ ) . (3.96)

The forced motion can be determined from (3.58), which is
universal because the transfer function W(a) that appears in it
is given in general form. Let us therefore rewrite this formula
using a specific transfer function. This gives

qfOr [t)- 2kexp(-at)

XIm exp (j) [ + IJU (a) IV(/) . (3.97)
, J:-j2,

For a vehicle with a transfer function having no damping, i.e.,
for ( = 0, the expressions for the natural and forced motions /10
assume the forms
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qt [t)= lX(j) sin [ t + arctan mx ( ) ; ' (3.98)

2kw exp (-t) X

xim exp (fi) )+1 (a2 +g2) (C J2 (3.99)

3.1.C. General Formula For Determination of the Response from Its

Transform

Multiplication of the input transform by the transfer function

of the vehicle yields a complicated response transform Y(s) in the

form of a rational-fraction function with multiple real and com-

plex roots:
U (s))'n(s)-- ((--S + )- ;) (s- or,)] VR+ ' (3.100)

If, in addition to the previously introduced notation

S(s)- =Y(s)(s--q) i +  (3.101)

we use

Y (s)= Y(s) [(s-,)(s- )] + , (3.102)

where the pair of multiple binomials 'corresponding to the E-th

pole and its conjugate have been struck from the denominator of

the fraction in (3.100), the formula for the expansion of that

fraction by terms becomes

Y(s 1,rl 01 (8-1,

CITY ) Y ( aa) C k'A
T), J2 a T *2Qah)' (3.103)

Hence follows the formula for the original: /103

+ ,J2exp(t) Im exp(I Q)X
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[ 1 19 (a) C -Ok
x 7 a I ,r |- "k+j" (3.104)

I jI22 k

The same formula also contains terms pertaining to simple
(nonmultiple) poles, for which Pk = 0 and ri = 0. We represent

these terms in the separate formula

(I)

Y Im (jL)exp(1-, +jjk (3.105)

3.2. RESPONSE OF UNGUIDED AEROSPACE VEHICLE TO QUANTIZED MOMENT
INPUTS

3.2.A. Transforms of Quantized Input Disturbances

Level-quantized disturbances vary not continuously, but
stepwise from one strength level to another. Time-quantized
disturbances remain at a constant level only for the duration of
a predetermined quantizing period TO, so that the plot of the

function representing a time- and level-quantized input is stepped,
with a step width T. The height of each step is determined

first of all by the shape of the envelope (modulating function).
The ordinates of the quantized function are equal to the en-
velope ordinates, which are reckoned in whole numbers of level-
quantizing steps with an excess on descending segments of the
envelope and a deficiency on its rising segments.

Figure 3.7a shows a function of the form /10

x(t)=e,', (1 < 0). (3.106)

that has been quantized by level with a step Ax and in time with
a step TO.

In Fig. 3.7b, the level-quantizing step has been reduced so
greatly (Ax---*), that the ordinates of the envelope and the quant-
ized function practically coincide at the times of time quantiza-
tioa t=nTo (n=O, 1, 2... oo).
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We shall call this function

x x the time-quantized form of the

IDAx original function and in-

ent8(<) troduce for it the quantiza-

_F L tion symbol which will

LLUA
2 LL Ll- -Jl4 be placed in front of the

0 r , i , functional notation for the
S x STo I0To 0 2 4 6 8 10Toa envelope. For Fig. 3.7b we

a) b) have

Figure 3.7. Plots of Quantized
Disturbances. a) Disturbance _ -x(t)= - ej . (3.107a)

quantized in level and time;

b) disturbance quantized in

time. As is shown, for example,

in [26], the Laplace trans-

form of this quantized form is

L- ( _ -e - r s - (3.107b)
-, I- eTO(?-sj s

Three cofactors, each of which has a specific role, 
must be dis-

tinghished in this formula.

The.first cofactor

-0

reflects asequence df pulses written in the form of the sum of /105

terms of a decreasing geometrical progression.

The second cofactor

I - e-r Ifl - t - To (3.109)

for the transform of the pulse sequence of (3.108) serves as a

transfer function containing two operations: a one-time-step

shift and subtraction of the shifted (delayed) sequence 
from the

basic sequence. Then one pulse of sequence (3.108) (each pulse)

yields a pair of pulses of equal amplitude 
exp(kTor) and unlike

signs with a one-step time shift.

The third cofactor

...d (3.110)

signifies the integration operation in which 
the pulses are con-
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verted into step functions.

The signal represented by (3.100), which is more complex than
(3.106), can also be converted to quantized form. If there are
no multiple poles in the transform of the signal, it follows from
(3.103) that - '

X(s) x (1) m X (l + J )

s- + OR (S -q -W JIOk) (3.111)
(L) (h)

After quantization to Fig. 3.7b, each elementary function

--- exp 'li or > exp[( +jj)t] acquires the transform

(3.107b), so that after time quantization, the composite disturb-
ance (3.111) will be Laplace-transformed as a composite of
transforms (3.107b), i.e.,

-I-

1 -exp [To (it - s)]
/10

X ( J.) l--exp (- o) (3.112)
l ax [1-- exp To (11, + - s)l s

The appearance of multiple roots in the input transform does not
change the structure of (3.112), but the operations of differen-
tiation with respect to a, l, and y are added under the summa-
tion sign according to (3.103).

Since the time-quantized step functions are constant on
the intervals At = TO, it is sufficient to have information on

them at the points t=0, oTo, 3T0,.. . . For this purpose, we leave
only the first cofactor(3.108) in expression (3.107b) and sub-
stitute in it

expTOs=erGt &_z; (3.113)

we then obtain

Elz]= (3.114)
Z - exp Tro

In exactly the same way, we obtain from (3.112) after the equi-
valent substitution

-I-

X [Z Z X (w)
z - exp Toll

(82
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SIm Z'N +

A~z-expTo(+) (3.115)
(k).

The functions (3.14) and (3.115) are known as z-transforms. The
change from the transform of the continuous functionsI.X(s) to
the z-transform x[z] [26] is written in one of the following
forms:

X [z]= X (s)}= {X (s)). (3.116)

It is easy to convert the z-transform in fraction form to a power
series in z by continuous division of the numerator of the frac-
tion by its denominator. Thus;, we obtain from (3.114)

/107

z :(z-a)= 1 az- +a2z- + asaz-3 + .+akx-'+. .. (3.117)

Investigating the (k + l)-th term of the series and equating the

coefficient of z-k to the value of the exponential function

where

~'=_ In a,
To

we see that the series (3.117) characterizes the ordinates of.an
exponential envelope with exponent'i at the points kT 0 .

Information on the position of each point in time is inherent
directly in the transform of .the shifted pulse

z'* 1 -kT]. (3.118)

Information on the envelope. ordinates is to a certain degree
formalized, since it is given in the form of the pulse height.
However, this formalization, which is inherent to the z-transform
method, is an intermediate methodological device, since after the
integration of l/s, which is mandatory both in the particular
formula (3.107b) and in the general formula (3.112), the height
(area) of the pulse is converted to a step-function ordinate and,
with consideration of the difference shift, to the ordinate of
the next fixed segment of the quantized form.

The difference-shift operation expressed by (3.109) is
written in the z-form as

I -z-1=Z- 1 (3.119)
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From the original pulse sequence

X [z]= x(nTo)z-A (3.120a)
k-0O

it enables us to obtain the difference between the two shifted
sequences

X . [z] = {x(kTo)-x [(k - 1) T.1} z-=
k.0

- XfzJ(l-z )o (3.120b)

12345678910 t

b)

Figure 3.8. Intermediate Forms of
Representation of Time-Quantized
Input. a) Difference between shifted
pulse sequences; b) result of in-
tegration of the difference between
shifted pulse sequences.

The function (3.120b), denoted by Xu[zJ, also represents the

pulse sequence. If its envelope is represented by the lower-
case letter with the same subscript as in (3.120), i.e., xu(t),

then that formula becomes

X 1_, [z]= xj (kTo) z-k=
k-O

x (0) z0 + :x-l (kTo)z -k.  (3.120c)

Figure 3.8 shows the shifted-sequence difference for the
exponential envelope considered earlier in Fig. 3.7. The first
pulse in the sequence has, according to (3.120c), a height
equal to the initial value of the function x(0), and the pulses
that follow conform in magnitude and sign to the increments of
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the function. The increments are negative for the type of de-
creasing function considered here.

If the shifted-sequence difference is integrated, each
pulse is transformed into a shifted step function as shown in /109
Fig. 3.8b, where the first positive step x(0)l(t) is shaded in
one direction and the negative steps Ax(kTo)1(t-kTo) are shaded
in the other direction and transposed to the top of the figure
so that subtraction will be more convenient. Superposition of
shading cancels the corresponding area, and it is easily seen
that the part of the area with positive shading that remains
in Fig. 3.8 coincides exactly with the function _JeQ
shown in Fig. 3.7.

An analytical expression for the resulting function is
easily derived from (3.120c) by integration:

x,_ (t)d =_-j x(t)= x (0) 1 [)

+ Ax (To) 1 [ - kTO).  (3.121)
- I

For quantized (stepped) inputs, therefore, it is necessary to
convert from functional description of the envelope to descrip-
tion of the disturbance in sequence form; calculation of the
response is then quite simple, as will be shown below.

3.2.B. Strongly Damped Motion with Quantized Disturbances

Here we consider the case in which the transfer function of
the vehicle is given by (2.83). Since the quantized input must'
be assigned in the form XfzJ, the function of form (2.83)
must be combined with the integrating-element transfer function'
(3.110); then

o (s) -- k/T2
W (s(s- )(sT2 (3.122)

will contain the three poles fP, P2, P3(3s=0).

It is separated into three terms
3 -k-

O, (S)=I __K WO( ) _k

-2 /110

2 02- p s J (3.123) .
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In the z-transform method
[26] with consideration of
quantized disturbances, the
system response y is also to
be studied in the form of a
sequence of pulses with en-

LR O 2T0  3T4 4 T velope-height modulation y(t),
and it is therefore necessary

iY 1 zA to convert from the transfer

4 ... function (3.123) to the Z-
form. For systems with iner-
tial elements (with memory),

Figure 3.9. Pulse Sequence. however, impression of a
of input-----) Reference Pulses at Times quantized input triggers a
of input quantization; g response that has a more com-
vehicle response interrogation plex form than steps in the
pulses with shift 1 - K. intervals between quantiza-

tion times. Thus, along with
information on the output quantity at the times of input-signal
quantization, it is necessary to have data on the response at
intermediate times.

For this purpose, we introduce a new system of pulses that
also follow one another at a repetition interval TO but are

shifted by KT 0 from the signal-quantization points.

The system of pulses introduced here involves no physical
changes in the conditions of disturbance transformation at the
times (k-x)To (k=1, 2...oo), but is merely part of the procedure for

acquisition of data on the response at these times; it is there-
fore known as the interrogation-pulse system.

Figure 3.9 shows the positions of the interrogation pulses
relative to the pulses produced by quantization of the input
signal. As we see from the figure, the shift KT 0 is reckoned

from the end of the particular quantization interval in the di-
rection toward its beginning.

Let us examine of the terms in (3.123):

W. (S) T'0 (') !Wo () exp t (3.124)
s- PA

and apply the z-transformation to it, using the interrogation-
pulse system as the base for the transformation. We then obtain

exp(1 --x) TOh exp noks)=
n-

zexp(l-x)To (.3.125)
86 er (-s)
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The series under the summation sign is preserved in the left

member bf (3.125), while the right part of the same formula
gives the sum of the series, which differs from the result pre-
sented in (3.109) only in the scale and in the positions of the

reading times (the shift by KT0). It is therefore easy to con-

vert from (3.125) to a z-transform that depends on the argument

z and the parameter K and is known as the modified z-transform:

Wca [z, x]_= Wo(l)zexp(l )To (3.126)z-exp ok

z-- exp Tro0

Formulas (3.136) and (3.127) indicate two ways in which the

interrogation-pulse shift can be reckoned: from the end of the

time step, as indicated in Fig. 3.9, or from the beginning of
the step, for which the new symbol m = 1 - K, which has been

used by various authors [ll], [24], and others, is introduced.

The modified combined transfer function is written as fol-

lows in the z-form with consideration of (3.127):

•O 1Z, x] W (k) exp [(1 - x) Topk (3.128 )
Z- expTop

or symbolically /112

WV, =.j i , o(s)] = ' \W (s)I. (3.129)

After determination of the modified combined transfer function

in the z-form, the conditions of input transfer reduce to multi-

plication of the corresponding z-transforms:

Y[z, x= [z, 1xX, Iz] = o/ lz, Y] x [z]- , (3.130)

where Y[z, x] is the modified response z-transform, Wo[z, x). is

the modified combined transfer function of the vehicle in the z-

form, and Xl[z]=XIz] z-"_ is the sequence difference that cor-

responds to the quantized input.

The result Y[z, K] takes the form of a rational fraction in

which the coefficients of the polynomial in z that appear in the

numerator are functions of the lead K.

Fixing K at the successive values 1, 0.9, 0.8, ... , 0.1, we

can obtain the ordinary z-transforms for each of these values,

so that conversion to the original reduces to the continuous
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division indicated in (3.117).

Let us carry through the
calculation of the response for
a specific vehicle transfer func-
tion (3.122), which corresponds
to the transfer function (3.123)

S i_ , 7 8 with the pole values of (2.82).

Figure 3.10. Time Quantiza- In this case, the coef-
tion of Disturbance with En- ficients of the expansion are
velope in the Form of a -1-
Linear Function. W 0 ( )= k

(O)2(2_ 1/ke -- )
w(,) - k - -

Substituting them into (3.128), we obtain

T
ze exp -( - - ) 1 2 1To

exp ) -
[ To

zexp- exp ()_- -- 1)

Z - exp--(-E-- iE-- -- -7-- ) (3.131

Let us consider an input assigned in the form shown in Fig.
3.10, where the envelope of the steps is a linear function

x(t)=t, (3.132a)

and its Laplace transform is

X(s)= = - ~L] (3.132b)

The transform on the right in (3.132b) was obtained by the X-
transform method, which permits a similar conversion to the z-
transform:

xz=I z--expo -0 (z-1)2 (3.133)

Let us now use (3.120b) to determine the z-transform of the dif-
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ference between the shifted sequences /114

x,_, [zl= T (3.134)

and multiply it by the modified combined transfer function (3.131);
this gives

zi:ToY[z, Xz= _ __x

x[ zep A (e) I

z"0  I Z o

B(x) kzTo

o E (z - 1)2
zexT ( -- 1  (3.135a)

where

A (x)=exp (1-x) - 1 (3.135b)

B (%)=exp I(1-..) (- -ft-1) , (3.135c)

The last term in (3.135a) is proportional to the input disturbance

(3.133):

=Tz -kX [z], (3.136)
(z - 1)2

i.e., the vehicle response has a component that repeats the shape
of the quantized (with linearly increasing envelope) input on a

scale determined by the coefficient k. The remaining terms in

(3.135a) reflect the dynamic response lag with respect to the

disturbance that caused the response.

It is convenient to separate the first terms in the right-
hand side of (3.135a) into forced (steady) and natural (tran-

sient, damping) components.

The forced component will contain only the poles of the

input disturbance z = 1 and is now separated by the algebraic

methodswused previously, e.g., in (3.4) - methods that are na-

turally valid both for the region of the argument s and for z on

conversion to the proper fraction Y [z] with subsequent con-

sideration of the initial poles y(O)zO. Let us write the

forced component separately:

Yp [1, %] kTo x [i To.

22( (2-1- -1) 1--e p -2T(--- - - /115
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The operators (z-functions) in the left and right members of
(3.137) represent a sequence of interrogation pulses that is
constant in all time steps for a fixed K, since

W z- " (3.138)-- = " -- exp (- nos).

T-1-
The function Y[I, x], which is determined from A(K) and B(K),

characterizes the change in pulse height within a quantization
-I-

interval. It is ,sufficient to calculate Y[,x] once for ap-
plication to each time step.

The natural component is separated from (3.135a) in the
form

-- --

+Yj_ = y nat [z, A=
Z - Z2 Z Z 23

: + krT0A (Y)
.2 exp (-+__-)- -exp (-+gT

kr7o (x)'

ep 0 V -)-1 T-expT (-- 7)" (3.139)

The functions A(K) and B(K), which determine the relative form of
the response within the quantization interval for each time step,
can be calculated for each value of K. However, the scale will
be different for each time step, and will be determined both by
the constant cofactors in (3.137) and by the type of damping of
the exponential components represented by the operator part of
formula (3.139).

Thus, we obtain for the m-th time step /11

Y/ _at (n. ,, .)
2 [ap-(.--+ ,/U-1)-1

kT o exp (- - - )

2 e(3.140)

Instead of calculating the individual components in the response,
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we can, as was explained above, combine all terms of (3.135)
into a common fraction of the form

Y [z, ~]= b4 () z4 + b3 ()z3 +

(z -1)2 z - exp-- TO ( )

+ b2 (7) z 2 + b1 (-) z + bo (x)

4 () Z4 - e ... -b ( ) z + bo ()
(3.141)

zI + a 3za + a2z 2 + a 1z + ao

and carry out continuous division of the numerator by the deno-
minator for fixed values of K, when all coefficients are assigned
as numbers; then the coefficients of z- k will be complete values
of the entire response in the particular time step t = kT 0 and

at the fixed value K = K1.

The cases considered above have been cases of real negative
vehicle transfer function poles. The appearance of a positive
pole will not affect the procedure of calculating the response
to a quantized input, but it will not be admissible to neglect
the natural-motion component in this case, the more so since it
will come to dominate the over-all response with the passage of
time.

3.2.C. Weakly Damped Motion with Quantized Inputs /117

As we noted in Sec. 3.1.B, weakly damped oscillatory motions
arise when the vehicle transfer function has complex poles.

Taking transfer function (2.81) with the poles (2.82) as a
base and taking account of the integrating part in the representa-
tion (3.107b) of the quantized input, we arrive at a combined
transfer function of the form

U",, (S) kT-2 kT-2
s(s-p)(s-*) s(s -) S (3.142)

It can be separated into components for the poles I~t=, 2=P, p, =*,
and we do so with (3.122); we determine the coefficients of the
expansion

U-2
oPJ= - = W (0)= k;

.2-

T2
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and write the corresponding terms

T2 (s)= Im - (3.143)

Substitution of the values of the poles (B = a + jw) gives

1 (S)-k -1+iio (s) k (3.144)

We make the transition to the modified z-form using formula

(3.128) in the form

Wo Iz, ]= k z 7 z- x

(-e-jYT1-)exp (1--x)
x Im I- T (3.145)

z-exp-(-e+ jV _k2)

We separate the imaginary part of the fraction in (3.145) by /11
eliminating the complexity from the denominator; this yields

IVO , -.l- - I L,() Z + bo (X)
z-- a + ao ' (3.146)

where a,=exp -o ); (3.147a)

ax=L 2exp C Ios 0-l (3.147b)

ex p X(-2) 5
bo ()= - 2 X

.To T

Xsin E 1/l-_O V + arecost; (3.147c)

exp ( o- 1) X
b,(x)= X

( _ - _1)_To_- (3.147d)Xsin ( - )TO1 - arccos 3 147d)

After reducing the two fractions in (3.145) to .a common deno-
minator, we have

W o [z, xl = kz [l+b ()1] z2+ [bo0 ()- 61 (x)+all z+ao- bo (.)
(z- 1) (z 2 + a1z + ao) (3.148)
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For the known z-transform of the quantized input X[zl, the response

of the vehicle will be determined as follows in modified form

according to (3.130):

Y [z, x]= k(z - 1)X [z] x
[ I + b6 (%) ] z 2 + [bo()--bI(-) +al z +ao-bo(x) (3.1 9)

z2 + alz +a o

Since the transform X[z] is assumed to be given in the formof a

rational fraction, the entire product in the right member of

(3.149) will reduce to a rational (more complex) fraction.

Continuous division of the numerator of this fraction by /119
its denominator yields a representation of the over-all response

at the times of interrogation t=(n--x)To.

Preliminary determination of the forced part of the motion,

whose z-transform contains the poles of the input disturbance,
permits more rapid investigation of precisely this part of the

reaction if it is sufficient to have an inference only as to the

rapid damping of the natural motion.

Table IV.1 gives general expressions for the quantized-input

response. The notation used in the solutions is that of the z-

transform. To convert to the time region, it is sufficient,

after substitution of numerical values of all the coefficients

for a fixed K, to carry out continuous division of the numerator

of the fraction by its denominator to obtain the power series

' y(kTo, y) A (kT,, -) it - Tk], (3.150)

whose coefficients indicate the response in sampled form.

3.3. STRUCTURE OF THE VEHICLE'S ANGULAR-MOTION LOOP. CONSIDERA-
TION OF CONTROL COUPLINGS

3.3.A. Structure of Unguided Aerospace Vehicle

The structural diagram of the vehicle gives a graphical re-

presentation of its transfer properties and makes it easier, by

comparison with the analytical description in the form of the

transfer functions discussed in Sees. 3.1 and 3.2, to follow the

dependence of the dynamic characteristics on the existing coupl-

ings in the uncontrolled vehicle and supplementary couplings
that are introduced via the controls and autopilot.

We shall take Eq. (2.78) as a basis for the angular-motion

structural diagram of the unguided vehicle, rewriting it in the
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form

a2s , (s) 4 ars -, (s) + ao0,'(s)= M(s). ( 3.151) *

We present this equation in the conditionally solved form

(s)- = 1 [1 (s)-- a, n(s)-axs, (s)]. (3.152)

The structural diagram of Fig. 3.11 is obtained from the condition-
al solution.

The first term in the
- - c brackets in (3.152) arrives

ar2s (S) ( '  at the adder via the forward
Ms) p(s 9(S) loop, while the other two

a terms come in on the feedback
c7 c lines. We can therefore sim-

plify the adder equation

as2 ,(s) = M (s)- ao, (s)- axs (s),
Figure 3.11. Structural Diagram
of Vehicle's Angular-Motion (3.153)
Loop.

which is fully equivalent to
the original equations
(3.151) and (3.152).

The transfer function between the input M(s) and the output
7(s) can be calculated directly from the structural diagram:

W (s)= n (s)
1 + l(s)+ c2(s)+... ' (3.154)

where H(s) is the product of all transfer functions of blocks in
the forward loop and c1 (s), c2(s)... are the products of the transfer

functions of all blocks in the negative feedback loops. In this
case, we obtain

1

S(s)= a2s2 1 (3.155)
+ao al a2s2 +as+a O

a2s2  a2S

The coefficients aO, a, a3 are determined from the second equatioi
of system (2.50), where a2 = 1.0, a1 = n , a0 = n, and M is the
entire right side.
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bS1 bS,
I I a

Figure 3.12. Structural Diagrams of
Angular Motion After Introduction of
Feedbacks Through Automatic Pilot.
a) Structural diagram of unguided
vehicle; b) direct negative feedback
through automatic pilot; c) idealized
automatic pilot in the form of a
forcing element; d) real autopilot.

If the vehicle has weakly developed tailplanes and a1 = 0, /121

the c2 (s) loop is opened and the new transfer function assumes

the form

) (s) .... a2 a2
W (S)1 =+0= l(s) a 0 2s+ ao s 2 + 2  (3.156)

S a2 s2

If, in addition, there is no aerodynamic moment proportional,
to the lateral angle of slip, feedback loop cl(s) of the struc-

tural diagram is also broken, and the transfer function is even

further simplified:

W(s)=fI(s)= - (3.157)

The structural diagram for the transfer function written in the /122
standard form (2.81) is given in Fig. 3.12. The inclusion of

element 1/S in loop d2 in addition to those in Fig. 3.11 is

conipensated by the inverse element s in the feedback block, so
that the properties of the loop remain unchanged.
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3.3.B. Consideration of Coupling Through Analog Autopilot

Structurally, the automatic pilot is represented by a block
in the negative feedback loop between the output 4(s) and the
input M(s) of the vehicle's dynamic diagram. This coupling is
indicated on Fig. 3.12b, where, in a first approximation, we have
considered only the gain of the autopilot.

To determine the new closed-system transfer function, de-
noted by D1(s ) , we can use the general formula (3.154), adding

a third loop c3 = kf.bk/T s , which gives

ex (s)= T2s2 k

1 2 kkjfi. T2s2 2ETS-+ 1 -+kkf.b (3.158)
T2s2 Ts T 2S2

We bring this transfer function to the standard form

k-

T2 2ET
s2"+ s+l

I+ kkf.b I +kkf.b

kl (3.159)7Ts2 + 2S2 Ts\+ 1 '

We note first of all that application of the coupling -kf.b re-

sulted in a favorable change in the static ratio between the
disturbing moment and the deviation in angle of yaw:

k= Ay k (3.160)
AM 1+ kkf b

When kkf.b >> 1, we have for all practical purposes k1 l1/kf.b,
i.e., this static ratio is the reciprocal in magnitude and di-
mensions of the automatic-pilot gain.

We also see from (3.159) that the relative time constant

T
T3= + (3.161)

and the relative damping factor

3= V+k.b (3.162)

have changed.
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However, the absolute damping factor /T =  /T3 has

remained unchanged.

The new natural frequency of the oscillations is

1 T

= /1 -kk..b (3.163)

i.e., the frequency increases with increasing kf.b . We can

provide a physical explanation for this 
effect by reference to

the structural diagram. Thus, if we consider not the loop c3

(see Fig. 3.12b), but the analogous loop in 
Fig. 3.11, we see that

the two direct negative feedbacks --a0 and -kf.b will be applied

at the same points of the diagram, which is equivalent to a

single common direct feedback

ao=ao-jkf. (3.164)

The coefficient a0 can be increased by changing 
the aero-

dynamic configuration of the vehicle, i.e., by developing, for

example, the tailplanes. The same coefficient a' in the pre-

sence of the automatic pilot can be increasedaccording to

(3 .164) by providing only an 
increase in the feedback coefficient

af.b. The designer should always consider the two 
possibilities.

In many cases, the automatic pilot compensates for static aero-

dynamic instability (a0 < 0) of the vehicle.

Additional couplings in the automatic pilot function 
simi- /124

larly in.determination of the vehicle's degree 
of damping. Fig-

ure 3.12c shows the improved coupling through 
the autopilot when,

in addition to the coefficient kf.b, it incorporates a concur-

rent-parallel branch with signal differentiation: 
Tf.bs, which

is known as a forcing element. If loop c2 of Fig. 3.11 is ex-

panded, it is, found that the feedback alS is applied at the

same points of the vehicle structural diagram as the forcing

element in the automatic pilot in Fig. 3.12c. We may therefore

add the transfer constants for the two couplings als and Tf.bs,

and the new coefficient a'0 , which determines 
the degree of

damping, will be

ai=aj+b '  
(3.165)

Consequently, the degree of damping can be increased 
either by
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design modification of the vehicle's aerodynamic properties or by
introducing a forcing loop into the autopilot.

When the true properties are
r 2 Q-al) considered, however, the automa-
.. ... tic-pilot forcing circuit takes
I--3 ) 2 a somewhat more complex form than

that in the. idealized exampleSC31(j,) considered above because of dy-
namic errors in the elements of

...... , the automatic pilot.

Figure 3.13. Structural Dia- The frequency character-
gram of Vehicle Loop Closed istics correspond to those shown
by Automatic Pilot with No- in Figs. 3.2 and 3.3 for certain
tation for Complex Transfer types of vehicles. Introduction
Functions Used in Applica- of an automatic pilot distorts
tion of Closing Nomogram. the frequency characteristics,

but the system's new frequency
characteristics can be deter-

mined from those of the vehicle with the aid of a standard"closing nomogram" constructed on the basis of the formula

S(f)=j -C J) (3.166)

For application of the closing nomogram, the structural
diagramef the guided vehicle must be brought to the form shown inFig. 3.13, where WVE(J ) is the known gain-phase frequency
characteristic (GPC) of the vehicle and WAP(Jw) is the GPC of
the automatic pilot.

The structural diagram must first be used to find the GPC
of the entire closed loop:

Cl (j)= WA () W (jw). (3.167)

Here the negative-feedback symbol is isolated in a separate block /1;
as shown in Fig. 3.13, and is not included in C31 (Jw). Multi-
plication of the frequency characteristics becomes an elementary
operation afterconversionto the logarithmic gain and phase
frequency characteristics - the LGC and LPC - and reduces to
addition ofthe gain in decibels and the phase angle in degrees.

The closing nomogram is then used to find the closed-systemGPC 031(Jw) from the characteristic C31 (jw). Between points 1

and 2 (see Fig. 3.13), the sought GPC is determined from thecharacteristic obtained from the nomogram by simple conversion:
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Figure 3.14. Closing Nomogram.
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WA4p(],,' (3.168)

which reduces to subtraction of the gains and phases in logarith-
mic coordinates.

Figure 3.14 shows the closing nomogram: its input coordinates
are arg[C 31 (jo,)] (phase) and 201I C31(j\)l (amplitude), which form a
uniform rectilinear coordinate grid. The output values ai 1'v 3 1(j').]
and 201g 1,3;(j(0) are taken from the curvilinear grid of isolines.
Interpolation is carried out when the input points fall into the
spaces between isolines.

If ICs:(j0))<<l, the feedback via loop C31 is weak. This re-

gion is represented by the lower half of the nomogram, where
negative values of the gain iC31Idb are plotted. We see from
the figure that the amplitude and phase lines of the rectilinear
input grid approach the output-coordinate isolines of the cor- /1
responding numeration at the bottom of the nomogram. As a re-
sult, the closed-system frequency characteristics approach the
characteristics of the complete open loop. With weak coupling
through the automatic-pilot loop, conversion of the character-
istics becomes elementary:

sl!") WAP (j) %p(f)= MM (jo). (3.169)

If. !C3s(i(>>l1, the feedback in loop C31 is strong and, ac-
cording to (3.167), the transfer. function D31(s) approaches
unity as a limit, i.e.,

(Da U(3.170)20 1g I , (Dal )1 = 0;

arg [,,8 (1,1= 0. (3.171)

In fact, at an open-loop gain of 30 dB at the top of the
nomogram, the closed-system amplitude varies near zero in the
range +0.3 dB, and only within these limits does it depend on
the input phase. The closed-system phase angle does not exceed
10, i.e., it is also near zero for practical purposes.

In this case it follows from (3.169)-(3.171) that

, (o U)- 1 (3.172)
WAp ())
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i.e., the properties of the vehicle change substantially in the

presence of strong feedback in the automatic-pilot loop, and

the frequency characteristic of the entire closed system between

points 1 and 2 becomes similar to the inverted frequency charac-

teristic of the automatic pilot itself.

3.3.C. Consideration of Coupling Through Digital Automatic 
Pilot

Figure 3.15 shows the angular-control structural diagram 
of

a vehicle: when a digital computer is used in the automatic-pilot

loop. The feedback includes, in addition to the computer, the

same analog elements as before: the gyroscope, which measures P,
and the control-actuator servo, which develops Mcon* Since it /128

is now possible to solve complex control problems in such a

system, the same figure indicates, in addition to the disturb-

ing input Mdist(s), the programmed input *pr(S), which 
might be

a predetermined maneuver, etc. Each input goes to its own adder

(1, 2). The output signal of adder 2 (after the gyroscope and

programmer) contains an estimate of the angular imbalance EM(s)

due to the two inputs and given in analog form. Converter

A-- then converts the imbalance from analog to discrete form

(digital code) for input into the computer with a time-quantiz-

ing interval TO long enough so that by the time of arrival 
of

the next number characterizing the ordinate EM the computer

will already have processed the information of the preceding

time step in accordance with its algorithm. After conversion

to discrete form (digital code) by the computer, the signal is

converted by converter CA to the analog stepped form, in which

it is used to control the actuator drive that generates the

controlling moment.

To avoid the introduction of additional notation for the

digital code, it can be assumed as a convention that the com-

puter algorithm transforms the input pulse sequence E[z] into

the output pulse sequence F[z]. Then it is sufficient to con-

vert from the analog form E(s) to the z-form E[z] to reflect

the input into the computer of only one imbalance value during
the entire interval TO (namely, the value of E at the beginning

of the interval), and to obtain the step function from the z-

function F[z] it is sufficient to separate the shifted-sequence

difference Fj[z] and then to integrate it.

If the computer algorithm is linear, the relation between

the z-forms E[z] and F[z] is given by the simple formula

F [z] = WAc [z E [z]. ( 3. 173)
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F E EHS qP (s)

c)d

a)

[z) dist (S)p

Figure 3.15. Structural Diagram of Vehiclewith Digital Automatic Pilot. a) Analog-
Digital Structure; b) z-structure; c)structural transformation of disturbing
moment to disturbance in angle of yaw; d)

duplication of disturbance in yaw angle
when adder is moved across branch point on
signal path.

The signal-transmision conditions are illustrated in thisform in Fig. 3.15b, i.e., by the z-structure of the system. We
note that the computer algorithm includes:

- the basic formula of the linear transformation that re-
sults in a rational-fraction function of z;

- a one-time-step delay ( - 1sturba) necesitated by the computer's
discrete output of the solutions;

- the scaletransmision cofficients necessary to match the transfer
properties of all blocks of the structure.
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In the z-structure, input disturbances must also be specified
in the zform. Since the programmed input *pr is applied to adder

2, after which only the information at the time-quantization

points is used in the signals, this input is translated directly

into the z-form

(3.174)

To convert the input Mdist(s) similarly, it is first necessary to

transfer it to adder 2. For this transfer, according to the

structural rules, the input transform must be multiplied by the

transfer functions of all elements between adders 1 and 2 in

Fig. 3.15a, which gives

S)M(s)=Mi (S) WV(). (3.175)

The dimensions of the disturbance will then agree with those of

the second term on the adder, so that after transfer of the dis-

turbing moment onto the angle line it will be identified as an

angle disturbance *dist equivalent to the moment disturbance as

indicated in Fig. 3.15, c and d.

On transfer of the disturbance *dist across junction 3,

two disturbances are formed in accordance with the transfer-
equivalence rules; one outside the loop and another within the
loop.

For the disturbance within the loop, --dist(s), which is

equivalent to Mdist, we can convert to the z-form:

Tf 1=stX ( [M dn (S) vEW (S)]. (3.176)

We then obtain the total disturbance applied to adder 2 in the
form

x [zl-= [zl- , &[z]. (3.177)

For the disturbance +$dist(s) outside the loop, the response

is analyzed separately after determination of the closed-loop
operating conditions.

Continuing to trace the closed loop on Fig. 3.15b, we go
from the computer function to the corresponding difference bet-
ween the shifted pulse sequences in the form

Fl [1==Z- F[l. (3.178) /130

This shifted pulse sequence difference excites all analog ele-
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ments of the diagram that are combined with the integrating
element 1/S, which participates in the shaping of the stepped
signal.

To obtain F'(s), it is necessary to take account not only of
the total input X[z], but also of the closing conditions. In
this case, the loop is closed by analog elements with the overall
transfer function

Co (s)= Ws(s) WVE (). (3.179)

Their response has a complex analog form, but when information istaken for the computer at discrete points, the data on the pro-
perties of the combined analog part are needed only in the form
of the ordinary z-transform:

C z]==- [ WsD(s)WsD(s)] (3.180)

It is now eacy to obtain F[zJ] from X[z], since the z-structure
contracts in the same way as the ordinary structural diagram,
giving

Z--1

F [z]= z (3.181)
1 + Col[ WALG[z] z

After determination of the pulse sequence at the input of the
analog elements in the closed system,, it becomes possible to
obtain the response at the output of these elements as the
modified z-transform. For this purpose, we find the modified
combined transfer function in the z-form for the combined
analog part:

Co [Z' z] x - I WSD (S)vE (3.182)
C0 ,, Ir V$ sDcs)Wi(s)]. (3.182)

Then the response ix caused by input x is determined from

z co[z, %) WA [z](z - 1) X z] /131
rz+Cz[ tm[z (z-j )  (3.183)

To obtain the over-all response in angle of yaw, it is necessary,as indicated in the right side of Fig. 3.15b, to add the com-ponents: *x given in the z-form and *dist given in the form of
the Laplace transform.

The first method of obtaining the sum consists in applica-
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tion of the inverse transformations according to the formula

\ q,[(k - .) Toj = L- 1 (2- t(S)~.k -. _) r.+ , - I z, , y] (3.184)

where L - is the inverse Laplace transform and 
i
' is the inverse

z-transform.

To reconcile the two terms in (3.184), only the values sam-

pled at the points t=(k--z)To are used in the continuous function

obtained after the inverse Laplace transformation.

Here the sampling interval can be reduced by varying K in

small increments.

The second method of obtaining the sum consists in conver-

sion to the modified z-transforms for both terms:

S[Z, ]- . [v- distlZ, , (3.185)

In this case, in addition to the previously obtained z-transform

x[Z, K], it is necessary to find the modified z-transform dist
[z, K], of the disturbance. Then, after adding in accordance
with (3.i185), we obtain the modified z-transform i[z, K] in the
form of a common fraction, to which the inverse z-transformation
(continuous division) must be applied.

Let us now consider separately the response PM due solely

to the moment disturbance, writing it in the modified z-form

1,p [,d-I -- 'zj [\VE (S) ,dist(s)l-
(3.186)

co lz Y- 1ALGC[z] (z - 1)
z + co[z] WAG [=l(z- 1)

The first term in (3.186) represents the response of the unguided

vehicle to a disturbance in moment, and the second term re-

presents .the compensation of the deviation.by the control loop.

We shall retain the modified z-form (3.186) for calcula- /132

tions of the process at all points, but we shall also write

the ordinary z-transform of the response in the form

Izl={I+ol~l7Am[Z(*- ]wAuz1(z-1) Xz WVE (S) Adist (SAl,
z + co [z] WALd [z] (z 1)

or
Z4 di.tIZ]

9. [z] =D. [z] +d-s[z], (3.187)
z + co [z] WAGi[z] (z-1)
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where C[z] is the transfer function of the closed-system error
in the z-form.

It is easily seen that the disturbance is compensated by anincrease in the gain of the elements forming C0[C], or, for the
most part by an increase in the efficiency of the controls.

Leta strong feedback --a-oo exist in the vehiple dynamic
structure shown in Fig. 3.11; then the transfer functibn of thepart of the diagram covered by this feedback can be replaced bythe gain

a, (3.188)
Assume also that the second feedback is very weak, a0 + 0;
then the over-all transfer function of the vehicle will be

WW=-- k (3.189)

Let us use this transfer function in the structure of Fig. 3.15a,
assuming as an approximation that the control actuater drive is
inertialess and only changes the gain k1 to the value k; then
the over-all transfer function of the combined analog part of the
diagram will be defined as

(s)=. (3.190)
From this we convert to the z-form

Co [z] - "To z (3.191)(z- 1)2 '
We shall asslme a unit computer algorithm, introducing only the /13one-step delay of solution readout, i.e.,

WA L [z] = z-. (3.192)

We multiply all transfer functions that appear in the closedloop of the simplified digital system under consideration:

-1 TA [
SCo[z]WA[ z(z-1) (3.193)

and determine the closed-system transfer function
kTo

z]= z(z-1) T0  (3.194)
1 kTo  z 2 - z + kTol+-

z (z- 1)
kTo <-, 

(3.195)
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the fraction of (3.194) can be broken up into two real terms of
the form

Z+ I- 2 /

kTo +)1

(1-4kT 0 1o 1 1
2 22

IZ 1 (3.196)z-- + - l -4kTo
2 2

We put

a= 1 + i/ --kT o  exp 11T.;
2 (3.197)

1 -Vl - 4kTo exp Tj,
2

where

1 I + "- 1-- 4kTo /134
1 - In 2

To 2
1 2

To I + V 4kT = - (3.198)

1 2
11= In =2-

To I - l - 4kTo

We then obtain

eD Nz= kToz - 1  zS lZ-kTo z-exp(- aTo)

z 1 (3.199)
z-exp(- a2To)

i.e., according to (3.199), the weighting function of this closed

system at the times of time quantization (t=kTo;k=1l,2,3 ...) passes

through the same points as the sum of the two exponentials, which
are one time increment apart:

w[)= ATo (exp [-,(t--To)- (3.
/1 -kTO (3.200)

- exp [- Oz (t - To)] .
If

I-<kT< 1, (3.201)
4
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then the function (3.194) has complex poles whose absolute values
are smaller than unity, and it can be presented in the form

(eIlz]=
kTo

Z- j 24kTo- I z- + j V4kTo- 

2kTO Im I
V4kTo- 1 z-1 j /4kTo1 ) (3.202a)

We set

2 (1+ V4kTo-1)

= kTo( 2 o 4o -=xp(-i- ")To, (3.202b)

where -11=- InkTo and /132T o

-1 arctanV/4kTo-- 1- (202c)
TO To (3.202c)

Then

( z i2 2 k T O [ rI M
O[Z ~4kTo-I z-exp (- + jQ)To (3.202d)

We see from (3.202d) that the weighting function of the
digital closed system with condition (3.201) passes through the
same points at the times of time quantization as do the damping
harmonic oscillations represented by the formula

2kTO
" T)= o exp [- l (t- T)] sin [(t- To)]. (3.202e)

If

kTo'> 1, (3.203a)

we obtain by analogy with the case of (3.201)

2kT
w [t) kT 0  exp r(t- T0) s I (I- To)], (3.203b)
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i.e., the weighting function contains diverging harmonic oscilla-
tions. Above we drew attention to the fact that the actual
weighting functions agree with the calculated functions wl, w2, w3
only at the points of time quantization.

However, it is evident even from the reference points obtain-
ed that closing of the negative feedback with the digital elements

and a supercritical gain k> makes the closed system inopera-
'0

tive even for the simplified vehicle diagram that has been re-
duced to a single integrating element. It is proven in the
general theory of digital control systems [11] that if poles of
the closed-system transfer function have absolute values larger
than unity, the resulting closed system is unstable.

We should also take note of a difference in the frequency /137
spectra of the analog signal and the signal that has been quant-
ized in time and amplitude. Thus, the relation between the
spectra of the analog and pulsed forms will be as follows for the
pulse sequence FEz] shown in Fig. 3.15a after the digital com-
puter when the envelope F(s) is transformed:,

Ak--CO

-[F(UW) F -IF (± ]. (3. 20!)

After conversion to the level-quantized signal _I-F, which re-

quires separation of the first difference and integration, the
spectrum becomes

-F()= exp fFTo - 1 2k(
joTo exp To Toh--co

exp jTo- 1 F(')+ F jo-- 2\ +
J-To exp PwTo To)

+F (i j . (3.205)

The notation in the right sides of (3.204) and (3.205) permits
an approximate conversion tothe spectrum of the level-quantized
signal from the first term, which is the spectrum of the analog
signal.
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3 .4. MATRIX AND STRUCTURAL-MATRIX DESCRIPTION OF THE CHARACTER-
ISTICS OF THE VEHICLE'S ANGLE-CONTROL LOOP

The matrix method can be used to solve the same problems di-
rectly in the time region and permits consideration of nonzero
initial conditions in highly lucid form.

To illuminate the properties of the method, we write Eq.
(2.78) in the time region in the modified Cauchy form:

/138

2)- ( _) -a W ' ) +(I+( (o2O) 1+

a2 a2-- (3.206)

a2

The modification of the equations reduces to introduction of
the pulsed components 91(0-)6tl] and 2(0-)6[t] into their right sides.
On solving the differential equations after integration of the
pulses introduced into the right members, we obtain the initial
values of the response:

M1 (0+)=(0-X (0+)= 2(0--),

which are equal to the assigned initial conditions. Subsequent
determination of the responses for t>0+ requires full solution
of the differential equation system (3.206) with assigned pulse
inputs and the addition to it, on the basis of the superposi-
tion principle, of the solution of the same system for the ini-

tial disturbance IM(t)1[t).
a,2

The type (3.206) equations can be given in more general
form:

6= bj,# + bl, + M ,; (3.207)

z=b21 1+ +b2A + M2

with the complete coefficient matrix, which will be indicated
here and below by straight lines:

b,1  b12  0 1
161= - ao a (3.208)

a, a2

The coefficient matrix corresponding to the initial equation of
vehicle angular motion (3.206) appears on the right in (3.206).

If the response is also written in matrix form
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with subsequent conversion from the particular responses *ik at a

given output (i) to a disturbance at one of the inputs (k) to the
general components pi of the response vector

(i /139

then all equations of (3.207) can be written in matrix nomencla-
ture

jiPj=I l Ij +iMI. (3.211)

This equation can be solved for any input matrix IMI as a first-
order matrix differential equation. Let us consider the basic
stepsand examples of solutions.

Derivation of normalized weighting function matrix

If the input is given in the right members of the general"
equations.(3.206) or (3.207) in the form of unit pulses, the in-
put matrix will be written

•El_ [ 0
M0 t [t] (3.212)

In this case, the response will be represented by the matrix of
the normalized weighting functions

I',=Ig= C1 2 fi(3.213)
921 9221 I

which are determined from (3.211), which assumes, for the parti-
cular input under consideration, the form

I&l--l=l gl+M~El. (3.1214a)

The formal solution of the first-order matrix equation of type
(3.21 4 a) takes the form

I g[=els ' =exp lt (3.214b)

and is called the matrix exponential.

The matrix exponential is expanded in power series:

Sg=E+l61'+.1,1 2 " +Ir- . . , (3.215)
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where the matrices on the right-hand side play the role of the
coefficients of the series in powers of t for the concrete an- /140
gular-motion problem under consideration and have the values

1 0
E1 O[ (unit matrix):IE= 0 1 (3.216a)

0 1

I-o -a I' (3.216b)

16 0 1 0 11 _

-aO -a - ao -l
-- ao  - a .

a0a1  a- a0j (3.21 6 c)

aa a-a 1 (3.216d)
a2- ao Iaa,-

0 0 a -2

III
Figure 3.16. Structural-Matrix Dia-
gram for Vehicle-Angular-Motion
Channel.

The sum of the terms of series (3.215) is formed from the com-
ponents (3.216a-d...) in the form

1 1= Bj, (3.217)

where

A= I -...t +" +
21 31 21
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SB= -a 1
2  (a - a)t f3

21 3!

(a- ( a, -  o)

21

The multidimensional (matrix).representation of the normalized
weighting function can be illustrated graphically by the struc-
tural-matrix diagram shown in Fig. 3.16, which was compiled from
formulas (3.206) after normalization of the coefficients and
their replacement by the more compact notation indicated in the
right-hand side of (3.216b).

To clarify the principle by which one element of the res-
ponse is formed, e.g., g1 2 , some of the lines in Fig. 3.16 have

been made heavier. Examining the loop formed by these lines, /141
we note that after the first integration (1/s), the pulse. has
been converted to a unit function, and will have the value of
the function g22 (0+)=I at time t = 0+, which corresponds to

the first term in the notation for this function in the matrix

(3.217). The function gl 2 (t) is determined after the second

integration, so that we have g12(0+)=0 at t = 0+, which also

follows from the notation for this function in matrix (3.217)
if we put t = 0 in it.

Nor is it difficult, using the expressions obtained earlier,
to write the complete solutions in matrix (3.217). Thus, in
the notation given in the right. member of (3.216b), the weight-
ing function (3.11) is reduced to the form

2 W e2 sin (l a0 -), (3.218)

and the product of the series for the function and

sin(t -faY) gives at once the series written into matrix (3.217).

The solution obtained in matrix form is quite easily produced
on a digital computer by the standard subroutine for the matrix /142
exponential that was described in [9].

In the case of higher-order equations, the structural-
matrix diagram will contain the same elements that appear in
Fig. 3.16, namely:

113



- the coefficient matrix fBI;

- the integrating matrix, written

0 . . . 0

0 _ . . 0 (3.219a)

0 0 .
8

- the input vector M or the input matrix

M, 0 . . . 0

IMI=IEIM= 0 M 9.. . (3.219b)M EM . . . . . . .(3.219b)

0 0 . . . M

- the response matrix I(I;

- adders, branch points, and connecting lines.

Derivation of aftereffect vector

We shall use the term "aftereffect vector" for the process

in which the dynamic system eliminates assigned nonzero initial

conditions I(O0-) and 02(0-) - a process that is multidimensional

in the general case btt two-dimensional for the present equation

system (3.206). Denoting the aftereffect vector by n, we obtain

its components II and na as linear forms of the particular

normalized weighting functions gik in the notation

=u+ (0_)g,1+M,(0_)g,. (3.220)

Derivation of weighting function for vehicle angular motion on /143

application of moment

As At - 0, brief unit moment pulses

Ma=MoAt= 1

give rise to a response in the form of a change in the angular

position of the vehicle; this response is called the dynamic-

system weighting function and is denoted by

a[t))=-g12Q(). (3.221a)*

*In this formula and below the first subscript identifies the angle,

and the second one the moment.
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In the present case, we use a single concrete normalized
weighting function gl 2 (angle-moment).

If the pulse is not a unit pulse, but the short-duration re-
quirement is observed (At--*O), then the response takes the form
of (3.221a) with its scale changed in proportion to pulse height,
i.e.,

12 = MotAw2 [1) A 1 (t).a, (3.221b)

If the interval At is comparable with the time constant of
the dynamic system, an input that is constant on this interval
and vanishes outside of it is written as the difference between
the shifted step functions:

M [1)= M o 1 [)-M o 1 [t- At). (3.222a)

The response is accordingly obtained as the difference between the
shifted transient responses:

Y12 Mt)= O M {h12 [1)- h 2 (- At)}. (3.222b )

Substituting the integrals of the weighting functions for the
transient responses, we obtain

I

2 [t)=Mo 1()d, (0o < t < At);

+12 It)= MO. g12 () dv - M. g (- - At) dr
0 At

(At i < 00).
An exact evalation of the conditions for conversion from the /14
transient difference to the weighting function in accordance.
with At is given in [25].

Derivation of vehicle's standard-input response matrix

The standard input disturbances to the vehicle that were
examined in Sec. 3.1 can be assigned in matrix form if they are
regarded as solutions of the modified Cauchy equation system in'
the form (3.207) but are written with new coeffieients and ini-'
tial conditions. Writing the system for formation of the inputs
simultaneously with system (3.207), we obtain the unified equa-
tion system

i=-b + b1 +2 0 + o +%(0-)8[t]

2 =b 211 bj22 +12  b23 +3  + 0 + ,82 ((0-) t 223a)
1,==o+ o +b 3+b 34+ (0+) l ] (3.f223a)

M2=+=o+ 0 +b4+b 4 ++ (O +) a [t]
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In the second of these equations, the coefficient b2 3 = 1/a 2 in-

troduces the function

,b3= M-- M(t), (3.223b)

which is obtained as the solution of the system formed by the last
two equations. These equations can be solved independently of the
first two, but our objective in this article is not to solve these
equations, but to write the equations for the given solution
(3.223b) by selecting the coefficients bik and the desired ini-

tial values 1 (0+) (i = 3, 4); k = 3, 4).

To simplify the selection, Table IV.2 gives coefficient

matrices [b,3 b34, corresponding to the standard responses. Thus,

the fifth line of the table gives for a harmonic input

b3 3=b 44 = 0; 34= 1, . b43=--2.

For the harmonic oscillations to have a phase 4 and an amplitude
A, it is necessary to select initial values that satisfy the con- /145
ditions given in columns 3 and 4 of the table: (0 -)=Asin,
(0 - )- A co:,.

After determination of all coefficients, the matrix of the
combined equation system is written

b , b12 0 0

0j= b 0 b2, b23 0 (3.224a)0 0 b33 b.4
O 0 b4, b44

or 0 0 ....... 0

coefficient
matrix of vehicle
equation system b6230 ..... . .0

0 . ................................................................ ( 3 .2 2 4 b )
0 . . . . . . . . . ,coefficient

matrix of system
.... . . of equations forming

0..... .. .0 :input disturbance

The rank of matrix (3.224a) is determined by the second-
order vehicle dynamic equation that was chosen for the investiga-
tion and by the complexity of the input, which is also a solu-
tion of an equation system that has been reduced to the second
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order. The form (3.224b) generalizes the more complex cases of
arbitrary order of the equations: the coefficients of the vehicle
equation system will always be placed in the upper left corner of
the matrix, occupying an nXn square(where n is the order of the
vehicle equation system), and the coefficients of the equation
system forming the input disturbance will be placed in the lower
right corner of the matrix, occupying an mnm square (where m
is the order of this system of equations).

The two equation systems are related through the coefficient

bnl,,+, which appears in (3.223b). Irrespective of the rank of the

matrix, the equation for determination of the partial normalized
weighting functions remains in the form (3.214a), and its solu- /146
tion in the form of the matrix exponential (3.214b). This
solution is expanded in the series form (3.215), and the digital-
computer algorithm can be written in the same type of procedure
regardless of the rank of the matrix.

Below we shall follow through the procedure for obtaining
the solution only for the specific coefficient matrix (3.22-a).
Inspecting the conditions for raising the coefficient matrix
to various powers in the examples of formulas (3.216 a-d), we
note at once that the zero elements in the lower left corner of
the matrix remain vacant,, and the solution in the form of the
normalized weighting function matrix assumes the form

1n 1  12  g 1Ku 14

Ig9l= g 21  g 22  g23  24  (3.225)
0 0 g33, R4 (3.225)
0 0 g 43 g 44

It is easy to convert from the normalized weighting function
matrix to the response to the given input and simultaneously to
take account of the aftereffect regime brought about by the pre-
sence of the nonzero initial conditions. The general expression
is written in the form of the vector

1 t( -)n (0-)K12 +9(0+)gjf( 0+)914

1') (0 )21 + (O-)g22 3(0+)23+4(0+)24

94 (0+),r 3 +%(0+)g 44  (3.226)

The first component 1, of the response vector is the basic

component, and the entire procedure set forth above was, strictly
speaking, elaborated for it. The terms j(0-)gj1 and $2(0-)g12

reflect the aftereffect regime, while 3(0+)g 13'and *4(0+)g4 re-
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flect the forced response. In the digital-computer solution, the
starting functions are the gll, g1 2 g1 3 ' and gl4 obtained in the

course of the solution, and the unknown sum 1 is formed from

them with the weighting coefficients 1(0-), 2(0-), M(0~), and

*4(0+) . It is unnecessary to extract the second response-vector

component 12 , since it is a computer printout auxiliary. The

third component 3 represents the input disturbance, and it is

helpful to print it out as a check. The fourth component 4 /1

gives an indirect characterization of the input disturbance and
need not be printed out.

Simpler formulas, e.g., a formula for the forced motion alone,
follow from (3.226) when some of the weighting functions have
zero values.

The second-order angular-motion equation used as a basis
for the present chapter has made it possible to obtain a number
of clear-cut relationships between characteristics of the vehi-
cle that can be used for comparatively fast identification of
the primary parameters of the vehicle on the basis of test data.
The same method can also be extended to more complex cases.

Such simplification of the more general equation system
(2.50) is typically encountered in wind-tunnel tests of models
and on certain unperturbed segments of trajectories.
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CHAPTER IV /148

CHARACTERISTICS OF THE AEROSPACE VEHICLE AS A
STATIONARY LINEAR OBJECT OF CONTROL WITH

CONSIDERATION OF ADDITIONAL DEGREES
OF FREEDOM

4.1. ADDITIONAL DEGREE OF FREEDOM INTRODUCED INTO ANGULAR-MOTION
LOOP BY-DISPLACEMENT OF THE CENTER OF MASS

4.1.A. Change in Transfer Functions

The final values of the vehicle's transfer functions, which
take account of both the motion of the center of the mass and the
motion about the center of mass, are given in Appendix III (see
column headed "Short-Period Motion"). In the present section, we
shall examine reciprocal effects between the loops describing the
angular motion and the motion of the center of mass and the con-
ditions under which their characteristics are deformed.

If we return to equation system (2.36) and confine the se-
cond equation to the steady-state relation between the elevator
deflection angle 6e and the angle of attack a, i.e.,

a-' (4.1)

it is sufficient to use only the first equation to determine the
increment in the slope angle (motion of center of mass). With
this approach, the second equation of system (2.36) reflects,
instead of direct coupling (4.1), an additional degree of freedom
that governs the coupling between a and 6e via a second-order

differential equation.

If the angle of attack is expressed in terms of the angle of /149
pitch and the trajectory slope angle in the second equation of
system (2.36), and then the moments from the change in e are com-
bined with the elevator moment

M=M d- M4d6- d i (4.2)

and the sum is considered to be given by program, it is suf-
ficient to investigate the second-order equation, as was done in
Chapter III, for the angular motion. In this case, the first
equation of system (2.36) introduces an additional degree of
freedom into the actual formation of the moment.

The change in the stationary characteristics under the ad-
ditional conditions is conveniently studied on standard elements;
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' I

of Vehicle Longitudinal Motion. a) With

disturbance in the form of a moment anda) b)

Figure 4.1. Expanded Structural Diagrams
of Vehicle Longitudinal Motion. a) With
disturbance in the form of a moment and
a force; b) with force disturbance ex-
cluded.

for this reason, we shall rewrite Eq. (2.36) in operator form
with standard coefficients, eliminating the variable Ac and
the increment symbol:

(Tos+ 1)O (s)=-aeo(s)+F* (s); (43)
(Ts2+2tETs +1) 0(s)=(Ts +1) 0 (s)+M* (s),

where

mV 1__ F
o=; M a.= F* _ F)

-- (4 4)

These equations were used to compile the structural diagram
of Fig. 4.1a, the top of which represents the vehicle's equation /15(
of moments in the form of an oscillatory-element structure, while
the bottom represents the equation of forces in the form of an
aperiodic-element structure. We shall refer to the coupling
between these elements as the major loop.

We then obtain the transfer function with respect to the in-
put M*, and omit the force increment F*.

For an open .major, loop, the transfer function of the entire
circuit will be

W (s) a (T 2s + 1)

(Tos + 1) (TsT + 2EIs+1) ( .5

For the closed loop, with consideration of the positive
sign of the feedback, we obtain a function of the form
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Tos + I
W (s) oTTs. + (T + 2ToTi)s2 + (To + 2 E7 - aT 2) s+ I-a (4 .6)

The dynamics of the angular motion are not affected by the

equation of forces when the coefficients a& and TO are small.

When the relation

(TI + 2 To) (To + 2 T - a4T7,) < ToTj ( 1 - a4), (4.7)

which proceeds from the Hurwitz stability criterion, is satisfied,

the oscillatory component in the vehicle's motion becomes non-

damping, i.e., the original characteristics of the vehicle are

strongly deformed. In exactly the same way, a substantial change
in the characteristics and the appearance of unstable components

of the motion result from a change in sign of the polynomial

coefficients in the denominator of transfer function (4.6), i.e.,
when

ao> 1 or aoT 2> To+2T. (4.8)

4.1.B. Change in Frequency Characteristics

Relation (4.6) yields the gain-phase characteristic

~W2 (W) To+ /15a
TOT, (jo)3 + (T1 + 2ETTI) (j.)2 + (To + 2ET 1 -

+1 (4.9)

-- agT2) (j) + 1-- a.

From Expression (4.9), we can determine the gain-frequency
characteristic

( To)2 + 1

- -a--(TI + 2eTo) Tl 2 ]2 + [(To + 2ETI--aT2) - ToT ] (4.10)

and the phase-frequency characteristic

y2 (w)= arctanw oTo -

ar (To 2T1 - aT) - ToT0 (4.11)
1--a -(Ti +2eToTI)<2

Instead of calculating the characteristics analytically,

use may be made of the plots of the logarithmic characteristics

for blocks W M and WC in Fig. 4.lb.
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Let us present the closing formula (4.6) in the form

S I 1 WKi (- W)

1 -WI 1

-- YC 1+(--Wi) -c4. )

it will then be sufficient to find the frequency characteristics
of the -W1 loop from the sum of the logarithmic frequency charac-

teristics WM and -WC (the minus sign causes a 1800 phase shift),

use the closing nomogram (Fig. 3.14), and obtain the logarithmic
frequency characteristics of the closed W3 loop. To convert them

to the unknown characteristics of loop W2, it is necessary to

subtract, in logarithmic units, the amplitude WC from W3 and to

add the phase W3 to the phase -1/WC in accordance with (4.12).

The influence of the characteristics of the loop correspond-
ing to the equation of forces on the frequency characteristics
of the angular-motion loop (equation of moments) can be seen di-
rectly from the inverse frequency characteristic of the closed /15
loop, which equals

1 iW2 jjW,. (4.13)

If the additional term -WC yields a positive increment to

the amplitude and phase of the inverse characteristic 1/W2 , the

increments of the unknown characteristic W2 will have the op-

posite signs.

4.1.C. Root-Locus Charts

Figure 4.2a shows the structural diagram investigated pre-
viously, but without the inputs F* and M* and with an isolated
coefficient as.

We introduce into the open-loop transfer function without
the coefficient ao the symbol "n," which signifies normaliza-

tion (as=l), i.e.,

T2s + 1
(Tos + 1) (T + 2Er Ts+1) ) " (4.14)

The poles of this transfer function are indicated by the
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a) b)

Figure 4.2. Allowance for Effect of Closing
"Large Loop" (Through Equation of Forces)
on Poles of Angular-Motion Transfer Function
of Vehicle. a) Modified Structure (see
Fig. 4.1b); b) root-locus charts plotted
against coupling coefficient.

crosses in Fig. 4.2b. The two conjugate poles nI and n2 coincide /153

with the poles of WM before closing, while the third, real pole

n = -I/T0 is introduced by the function WC -

The circle in the same figure indicates the position of the
zero of the operator transfer function W1 , i.e., 11 = -/T 2.

On closing of the loop when aa=O, the poles s of transfer

function W3 coincide with the poles indicated by the crosses on

the figure, and then when a:>0 , the poles begin to migrate,

following the path known as the root locus.

We determine the angle at which the root locus emerges from
point Ln from the formula

m

i-2

In the present case, the number of terms in (4.15) is de-
termined by the orders m = 1 of the numerator and n = 3 of the
denominator of transfer function Wln. The value of the first

tive sign of the feedback.
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Connecting all poles and zeroes to the first pole with
straight lines, we obtain the difference vectors that appear in
the sums of formula (4.15), whose arguments are denoted by the
1i (i = 1, 2, 3) in Fig. 4.2b.

We then obtain instead of (4.15)

?= O-- ?I+p++P". (4.16)

The positions of the zeroes and poles in Fig. 4.2b have been
adjusted arbitrarily in such a way that the angle of emergence
of the root locus (4.16) equals zero (vector nl-n 2 crosses vector

X1 3 at its center). The root locus beginning at point n2 will

have the same angle of emergence in virtue of symmetry.

Let us now determine the asymptote of the root locus. It
has a slope that can be determined from the formula for positive
feedback

2nt
na-=n' (4.17)n--m

i.e., we have in this case for 1 = 2, n = 3, m = 1 /15

.2 =.--= -(4.18)2

Thus, the root loci are initially directed toward the imag-
inary axis. This implies that coupling via the coefficient ao
in the equation of forces results in a decrease in the absolute
value of the real parts of the transfer-function poles, i.e.,
the relative damping factor begins to assert itself in the

characteristic of the vehicle as determined without this coup-
ling.

Each point of the root locus corresponds to a specific value
of as, which is determined from the positive-feedback formula:

I (T0 sT + 1) (Tos'+ 2Ts + )(4.19)
as (4.19)

Wj(sj) T2SI + 1

If the root locus has already been plotted, it is sufficient
to substitute the difference vectors from the particular point
Sk to the initial values of the poles and zeroes and apply the
formula

an IT (sR -- st)
ao = ()

6ml (sh-x) (4.20)
()

to key the points on the locus with values of ao.
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W_ O Re(sO

Y2

a) b)

Figure 4.3. Consideration of the Influence
of the Coupling Coefficient I/T0 on the

Poles of the Vehicle's Transfer Function.
a) Structural diagram; b) root loci.

In the present case, we have in application to (4.19)

ao TOT (Sk - 1) (Sk - "2) (Sk - "3)
S(Sk- ) ( .21 )

Let us now investigate the dependence of the root loci on
the coefficient l/T 0 in the equation of forces. For this pur-

pose, we open the loop in Fig. 4.la at the output of this coef-
ficient and transfer the unit feedback around this coefficient
to the output of the upper block as shown in Fig. 4.3a.

We determine the normalized open-loop transfer function
for this structure:

( + T2 )a

T2 S2 + 2ETIs + S

/155
a(T 2s + 1) -(T s2+2 s +1) (4.22)

s (T s2 + 2ETls + 1)

Reducing similar terms in the numerator, we have

T2s2 + (2T,-aT 2) s + I - a (.23)
s (Tls2 + 2EtTs + 1)

Let us assume that the numerator of this fraction has com-
plex roots X1' X2; then the positions of the zeroes and poles of

the transfer function .can be represented as seen in Fig. 4.3b.
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For negative feedback, formula (4.23) has anather constant
term on its right-hand side, i.e.,

m

limarg(s-)=t(2k- 1)-_ arg(s,-- ,)+

n

+ arg(sz- ). (4.24)
i-2

After marking out the difference vectors in Fig. 4.3b, we can

calculate the angle of emergence of the root locus from point n 1

(for I/T 0 = 0) from the formula

?=a -91- ?2+ T3f'P* (4.25)

The root loci can then be graduated with values of the coef- /1
ficient i/T 0 determined from a formula analogous to (4.19) but

applying for negative feedback:

( 1 ) Sk (Sk - ) (sk - 12) (4.26)

4.2. ANGULAR MOTION WITH ADDITIONAL DEGREE OF FREEDO I TOD
BY FIRST-HARMONIC ELASTIC OSCILLATIONS OF THE BODY

Let us present certain data on the mathematical model of an
elastic element. In a complex system, all material points of a
vehicle with elastic structure describe an angular and transla-
tional motion that can be represented as a combination of various
harmonics. It is a rather common practice to replace a complex
elastic system by a sum of linear elements with a transfer func-
tion of the form

Wa(s)= kg (4.27)
s2 + 92

where ke is the matching transfer constant and 0 is the harmonic

frequency of the bending vibrations.

Vibrations in an elastic element are excited in the form of
additional terms on the appearance (impression upon the input) of
moment or angle increments, and the response of the elastic ele-
ments appears in the equations of moments and forces and in the
angles of rotation of the vehicle's axial line. A matching
transfer constant ke is chosen in accordance with the steady in-

put and output.
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Axis of rigid strcture and
paralles to it

dyroscope mounting

Ground reference
direction (heading)

Figure 4.4. Schematic Representation
of Form of First-Harmonic Elastic
Vibrations in an Idealized Cylindrical
Vehicle. p is the angle of rotation of
the rigid structure, * 0 is the angle of

rotation of the elastic line relative
to the axis of the rigid structure,
measured at the nose of the vehicle;

*e is the same angle, but measured 
at

the position of the gyroscope; *i is

the total angle of rotation of the
elastic line, which can be measured
with 'the automatic-stabilization sys-
tem gyroscope.

Below we shall discuss only evaluation of the additional
axial-line rotation-angle increment introduced by bending of the
body, bearing in mind that the remaining problems are examined
in the book [15]. We shall also confine ourselves to the first
harmonic. We see from Fig. 4.4 that a gyroscope in the nose
section measures

+ e(4.28)

When the gyroscope is mounted in the tail section, it is
easy to establish that

.. ~/157
Se (4.29) -
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If the part of the elastic-element transfer function (4.27)
that reflects the course taken by the angular vibrations in time
is written for the point corresponding to the nose of the vehi-

cle, then it is necessary for the remaining points of the body,
which have distances 1 from the nose, to assign the function

(1)--, (14.30)

which determines the sign and magnitude of the ratio of the bend-
ing angles at the arbitrary and end points.

For a selected mountingposition of the angle-measuring de-
vice (gyroscope) Z, the magnitude and sign of K(Z) are defined,
and the transfer function of the elastic element is understood
to be the ratio of the transform of the response [the angle of
rotation *e (s)of the elastic line] to the input disturbance

[to the moment M(s)]:

V (s) .. (S) (4.31)
Af(s)

Let us now take as our base the structural diagram of the
vehicle's angular motion in Fig. 3.12b and supplement it with
an elastic element having the operator transfer function
(4.27) for the input and output indicated in the form of (4.31).
We then obtain a new structural diagram (Fig. 4 .5a), on which
the additional adder realizes formula (4.28) and the total an-
gle #m is measured by a gyroscope in the automatic-pilot feed-

back -kf.b .

Operation of the automatic pilot culminates with the de-
velopment of a controlling moment at the controls that is op-
posite in sign and corresponds in magnitude to the disturbing
moment.

Figure 4.5b repeats the preceding structural diagram (dia-
gram "a"), except that, firstly, we have removed the adder for
input of the disturbing moment, since it is not required for an
investigation of the natural motion only with emphasis on stab-
ility and, secondly, we have separated an elastic-element loop
with an automatic stabilizer characterized by the transfer
coefficient -kf.b, to which the element characterizing the rig-

id vehicle is connected in the form of a feedback.

It is easy to convert from diagram "b" to diagram "c" of
the same figure by assigning all elements except the elastic
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element a common transfer function
M A - of the form

kkf.b

f-b m +T 2s2 +- 2ETs + 1

"l[, T2s2 + 2eTs + I
eS j l+kkf-- Tas2 +2ET 3s+11 (4.32)

M iThe transfer function of the rig-
id vehicle closed by negative feed-

2 -s2+2Zvs'1 back across an autopilot has already

been presented [see formula (3.159)
ki .. for the function l(s)]. Since the

C2 closing conditions remain as before

C2 ) in (4.32), the characteristic poly-
nomials (denominators) in (4.32) and
(3.159) are the same, so that the

coefficients T3 and E3 are determined
Figure 4.5. Structure (3.161)
of Angle-Control Loop by the respective formulas (3.161)

of Vehicle With Elastic and (3.162). But since ¢2(s)

Element. a) Initial characterizes the ratio of the new

structure with element- transforms
ary automatic pilot;
b,c) modified struc- ~(s)= - (4.33)
tures.

its numerator is not the same as that

of D1(s) and it has a different transfer constant

S2 k .b (4.34)
1 + kkf "

Let us carry out a stability analysis of the guided vehicle 
with

the elastic element. For this purpose, we shall first use the

Nyquist frequency criterion, in which the 
rotation angle of the

N-vector is estimated [25].

According to this criterion, we investigate the 
gain-phase

frequency characteristic of the entire open loop'C 2(jw) shown in /160

Fig. 4.5c, which equals

S . 1 (4.35)
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a)

Figure 4.6. Gain-Phase Characteristics ofVehicle's Angle-Control Loop Opened at
Elastic Element. a) Characteristics of Gui-ded vehicle ¢2 and loop C with elastic
element according to structure of Fig.4.5c; b) excerpted segment of loop fre-
quency characteristic for calculation ofvector rotation angle as far as point of
discontinuity; c) same, beyond point ofdiscontinuity (when the frequencies of theelastic vibrations are on the segment ofthe GPC in the lower half of the complexplane).

The formulation of the closed-system frequency criterion of
stability depends on the nature of the poles of its open-loop

Let us assume that the function e2(s) that appears in the
oop formula (4.35) has all poles situated in the left half of

the complex plane. The second cofactor in this same formula.4.5;33) is written in expanded form and has two poles fre- 2 =

e situated on the imaginary axis, i.e., two so-called
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,,neutral poles.

Stability requires the argument increment

a argN(jo)= pv = 2 -- = .

0<Wo 1o (4.36)

Figure 4.6a is a plot of the gain-phase characteristic C(jw).
The construction was carried out in two steps:

- construction of the hodograph of the function - ( in
-e

a form that is arbitrary for general validity of the conclusions;

- multiplication of each vector of this hodograph by the

scalar ) in accordance with formula (4.35).

At point w = 0, we have We. (0) = 1, and the hodograph of

C(j) coincides with that of k ( ). At point w + , we shall

have W ( ) - -0; here the amplitude decrease is inversely pro-

portional to the square of the frequency, so that the terminal

segment of the hodograph of C(jw) is opposite in sign to the ini-

tial segment of the GPC _-e (j)' and approaches zero more rapidly.
e

At the point w = 0e, the hodograph of C(jw) has a discontinuity,

so that it is necessary to examine the segments of the hodograph

before and after the point of discontinuity. We denote

2e- =l11m (Qe- A) ( 4.37)2--

and /162

2e M l -1) e 'AI" (4.38)

then

C(j2e-)=-- -2 (1)(jo-e), (4.39)

i.e.,'the asymptote for this point of the hodograph is a semi-

infinite straight line drawn from the origin through the point

-2 2(j e). Figure 4.6b shows the entire segment of the C(jw)
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hodograph for variation of the frequency in the range O<<Q e.

The hodograph for frequencies in the range Q< aoo ap-

pears in Fig. 4 .6c, where the value of the vector at the point
of discontinuity is

The asymptote for this vector is a semiinfinite line drawn from

the same point -e-((jW) through the origin.
e

The point -1, jO on the left half of the real axis is the
origin of the vector N(jw), which ends on the C(jw) hodograph.
Figure 4 .6 a shows the Vector for the frequency w = wi, i.e.,

N(jwi). To find the increment of the argument of the N-vector

and compare it with (4.36) for the discontinuous GPC, it is nec-
essary to make separate measurements for the increments of the
argument 1 before the discontinuity and the argument 2 after

the discontinuity and add them [25].

We have from Fig. 4.6b

?j= arg N (j2e-)-arg N (j 0), (4.41)

and it follows from Fig. 4.6c that

2== arg N(i)-arg N(j2e + )= - n - i,  (4.42)

from which we obtain the sum

a arg N(j)= f = Y.= + 2 22

For this particular form of the hodograph and for the case /1
in which the point w = e lies in the lower half of the complex
plane, the N-vector has rotated through minus two quadrants,
since both of the terms ¢1 and 02 are negative. Consequently,

condition (4.36) is not satisfied and the system is unstable,
i.e., the elastic oscillations sensed by the autopilot's measur-
ing gyroscope are then converted to moment increments at the con- /1'
trols that increase them instead of stabilizing them.
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uppeeho oe l b) e

% ;

kW=e

Figure 4.7. Gain-Phase Frequency Character-

c) GPC 02 entirely within the third quadrant

due to change in position of gyroscope in
the vehicle.

Let us now consider the case in which the point w = e on

the hodograph of $2 (jw) lies in the upper half of the complex

plane (Fig. 4.7a). Drawing an infinite straight line through
this point and the origin, we obtain an asymptote to which the
following vectors are parallel: N(je-) in the upper half-

plane and N(j~e+) in the lower half-plane. Calculating the

increment of the argument of the N-vector (Fig. 4.7a), we ob-
tain

- for the zone 04@(04:
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- for the zone 1e<w4c:

y2=argN(joo)-argN(j 2+)= nt-cp,. (4.44)

The sum of the angles is

aargN(]U")=cf1d- 2  n= + +2 - (4.45)

and satisfies condition (4.36).

Thus, for a system that is stable without the elastic ele-
ment, the transfer function 42(s) has all poles in the left
half-plane. Closing of its loop by a negative feedback across
the elastic element does not disturb the stability conditions
if the frequency of the elastic oscillations on the hodograph of
D2 (jw) lies on the segment occupying the upper half-plane. This
condition can be written analytically in the form

Im (D2 (j y) >0, or
O<arg 02 (fe) <. (4.46)

This is a necessary but insufficient stability condition for the
present system with an elastic element. In fact, if the C(jw)
hodograph crosses the negative real semiaxis to the left of the
point -1, JO (see dashed lines on Fig. 4.7a), i.e., if the mod-
ulus of the N-vector is greater than unity at the frequency of
intersection of the real axis denoted by w_, then the new incre-
ment to the argument on segment 0 4<<Q will be

S(4.47)

and the sum of the increments /16'

Aarg N'(j,,) :.: .?., ...... (4.48)

will not satisfy condition (4.36).

Changes in the magnitude and sign of 1 result from the new
conditions of motion of the N-vector along the C(jw) hodograph.
We see from the vectors N(j(,,) (k=-1, 2,3,4 ...) indicated on the fig-
ure around the point -1, jO that the N-vector rotates in the ne-
gative direction.

Thus, the necessary and sufficient stability conditions are
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the phase condition (4.46) and the amplitude condition

I C(Iw,.)I < 1, (4.49)

which is formulated as failure of the C(jw) hodograph to bracket
the point -1, JO. If 02(s) is considered not in general form,

but in its specific form (4.32), then the hodograph of -~,(jf)

will assume the form shown in Fig. 4.7b. The terminal segments
of the hodograph are determined by limit transitions in (4.32),
i.e.,

2 t(j) lim (D(jw)= k k"h V (4 0
Se * (- (14.50)

(4.51)

The GPC lies entirely in the first quadrant. In this case, as
before, we mark the point on the hodograph with.the frequency
w = e, draw the asymptote and construct the segments of the

C(jw) hodograph for the frequency ranges before and after n e
Such constructions are indicated on the same figure and permit
calculation of the increment to the N-vector argument:

9,= ar, ' (i;.- )- arg N(j0) > 0, (4.52)

p2= argN(joo)-argN(j,,+)= +n-- . (4.53)

This is followed by determination of the sum

4,arg N (jw)=yp+p,= +ln= 2 . (4.54)

The sum satisfies condition (4.36), and the vehicle's angular- /166
control loop with negative feedback across the elastic element
is always stable. However, in accordance with Fig. 4.4 and
formula (4.30), the sign of the negative feedback through the
elastic element depends on the p-osition of the measuring
gyroscope along the elastic axis of the structure. The gyros-
cope becomes most sensitive at the nodal points; when it is
transferred from one node to another, the sign of ke changes

and the loop shown in Fig. 4.5b becomes a positive rather than
a negative feedback loop as a result of the two sign reversals
in 2 (s ) and ke .

Since the entire preceding stability analysis and the
formulation of the frequency stability criterion were oriented
to the case of negative feedback in the loop, the simplest ap-
proach is to reduce the positive feedback loop to the same case.
For this it is sufficient to consider, instead of the element
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2(s), another element 92(s) with the opposite sign, i.e.,

(P2(S)= - ( 2 (s). (4.55)

Then element 2~(s) is covered by the negative feedback through

the elastic element.

In Fig. 4.7c, we have constructed a hodograph of u()

simply by changing the signs of all vectors of the - 4 j)
,e

hodograph of Fig. 4.7b. Since the -- () hodograph was en-

tirely within the third quadrant (lower half of the complex
plane), the necessary condition (4.46) is not satisfied and the
system is always unstable. This also seen from Fig. 4 .7c, where
the increments to the N-vector argument are both negative and
their sum is

(4.56)

We note that the more general hodograph of c 2 (j) in

Fig. 4 .6a will, after the sign change, have segments in both the
lower and upper half-planes. Thus elastic oscillation frequen-
cies at which the system as a whole is stable exist for it /1
even when the sign of ke changes.

In many of the cases examined above, therefore, the vehicle
has the potential capability of retaining stability even when
secondary bending vibrations of the body make their appearance.
In these cases, the stabilization is due to a favorable phase re-
lation in the loop, which results in a response of the controls
such that moments that tend to cancel the bending oscillations
are applied to the body.

Cases in which condition (4.49) is not satisfied call for
a change in the amplitude relations that reduces to a decrease
in the gain of the loop containing the elastic element.

Let us consider one more potentially possible way of
stabilizing elastic oscillations that is offered by the controlled
aerospace vehicle. Let the vehicle have no aerodynamic damping
(E = 0), and let the role of this damping be taken by a tran-
sient feedback in the autopilot (see Fig. 3.11c). Then

k (s)=kf.b Tfs (4.57)

must be substituted for kf.b in (4.32), and the vehicle's W(s)
must be replaced by the new transfer function
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k (4.58)2 s 2 + 1

which gives

k jb+ Tf.,s (kjib+ Tf.ts) (T2 s 2 + 1)
-- ( kkj-I+ kiTs -2s2 + kT$s + 1 + kkl.b

1- 2S2 +

k f- ( + Ts)(l + T2S2) (4.59)

1 + kkf.b  Ta2 + 2 3T3 s + 1

here

T = Tf.b

Lb 
(4.60)

T3 = )1 + kf,'
kTLb

2T' 1' + kk.b,

We now determine the transfer function of the entire open loop /168

shown in Fig. 4.5c:

kek .b (1 + Ts) (1 + 23s2) ( 4.61)
C (s)= 1 + kk j (TSs2 + 23, T + )a + a )

We denote

kk f.b (4.62)
(1 + kk~bQ

and

o-_1. (4.63)

Then relation (4.61) becomes

k,.(1 + Ts) (S2 + 9) U U(s) (4.64)
(St)=S=2(T2 + 23,Ts+1) (s+ Q~) V (s)

Here Sn is the frequency of the vehicle's natural undamped

vibrations as an ideal rigid body.

Let us investigate analytically the stability of the loop

closed by negative feedback with the transfer function of the

entire open loop (4.64). For this purpose, it is sufficient to

write the characteristic polynomial
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U(s)+ v (s)-= Q 7's' + [2LT+ (!L) 21T] vss+

+ k O ++ ( 2t s+ +(2t,+k902s +(I + kv) s. (4.65)

0 - ni '0U

a) b)

Figure 4.8. GPC's of Undamped Vehicle in
Loop Closed by Forcing Autopilot. a)
First stage in construction of GPC mark-
ed with natural and elastic vibration
frequencies; b) second stage in construc-
tion of GPC from complete formula.

For simplicity in the notation, we cancel the terms contain-ing T and use this polynomial to wrIte the next-to-last Hurwitz
determinant [26]:

1 T 0

a 4 2 1+T2+ k, 1

0 " (4.66)

According to the Hurwitz criterion, it is sufficient to /16
satisfy the condition

-n,<Qe (4.67)

for the determinant of (4.66) to be positive, i.e., the frequency
of the rigid-vehicle natural vibrations must be smaller than the
frequency of the elastic vibrations, which is usually the case.

The fact that the elastic vibrations can potentially be
stabilized in this way is easily explained with reference to the
frequency characteristics. Figure 4.8 is a plot of the GPC of
the function

138



1 +Ts

3(s)= + s2+ 2Ts+ 1 ' (4.68)

which differs from the function D2 (s) by the cofactor 1-+ 2s2  2

in the numerator of the fraction in (4.59). Since the denomina-
tor of function (4.68) is of order one higher than its numerator,
the entire hodograph is situated, as a rule, in the fourth
quadrant. The points w = Q and w = Oe are marked on the
hodograph. n e

It is easy to convert from the hodograph of D3(jw) to that

of I2 (jw). Indeed, the cofactor

.Q2 P2' (4.69)

causes the entire function to vanish at the frequency w = On: /170

I2(jQn) = 0, where the tangent to the hodograph at the coordinate
origin has the slope

arg (3 (jn).

It is indicated in Fig. 4.8b that the segment of the hodo-
graph for the frequency range 0 < w < Qn is oriented along the
tangent whose direction has been transferred from Fig..4.8a near
n', where the characteristic passes through zero.

For the segment of the hodograph in the frequency range
Qn < W < - , because the numerator of (4.59) has a higher order

than the denominator, the absolute value of the fraction in-
creases without limit, and the sign change of the cofactor of
(4.69) for w > Qn transfers this entire segment of the hodograph

from the lower shaded sector in Fig. 4 .8a into the upper sector.

It now becomes clear that when condition (4.67) is satisfied,
the point with frequency w = Qe falls on the segment of the

hodograph in the upper half of the complex plane - a necessary
stability condition, as follows from the constructions given in
Fig. 4.7. The same condition (4.67) is sufficient for this
type of hodograph, since its intersection with the real axis
occurs at zero absolute magnitude, and the amplitude limitation
(4.49) is unconditionally satisfied.
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4.3. CONSIDERATION OF EFFECTS OF SEVERAL ELASTIC-VIBRATION HAR-
MONICS ON STABILIZATION CONDITIONS

We shall use a formula analogous to (4.27) to take account
of additional elastic-vibration harmonics:

_S2 + (s) (4.70)
s2 + i M (s)

Here i is the number of the harmonic, 9i is the bending-vibra-

tion frequency of the harmonic under investigation, i is the

additional angle introduced by the vibrations of this harmonic
in the gyroscope readings, and ki is a coupling coefficient

whose magnitude and sign are determined by the conditions of
harmonic analysis of the elastic vibrations at the mounting po-
sition of the gyroscope.

The angle measured by the
gyroscope in the presence of

M F several harmonics is
n

m (4.71)

I " The angular-stabilization

structure of the vehicle has
- - +been constructed in Fig. 4.9 in

accordance with (4.70) and
(4.71); it is a development of

I+ Fig. 4.5a.

__- . It is convenient for the
L. -m banalysis to replace the concur-

rent-parallel elastic elements
by a single composite elastic

Figure 4.9. Structural Dia- element whose transfer function
gram of Guided Aerospace Ve- is determined from the formula
hicle with Elastic Elements
of Several Harmonics.

.(s)= k__ ___, _ sq _ I(s+ ...( + k (s+ (+ + S2 + Q2...
- (s + ! V (() = f + s

... (s2 + 2) + ... + kn (S2 + Q')...(S2 + 9~-1)
... (s+ ) (4.72)

We then substitute s2 = p in the numerator polynomial U(s 2 ) and
reduce the polynomial to the form
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U (p)= An-p-' - A,- 2 -2 ... + A 1p+ Ao,
n

A,_,-- ki
where (473)

(4.73)

A0= 12 ... t-1 2t+1 ... 2n-x .
1-1

From the condition

U(pt)=0 (4.74)

we find the roots of this polynomial:

PI, P2, Pn-. ,

and we can then write instead of (4.72)

n-1

ki H (s2 - pt)
w (s) . -1 (4.75)

n (s2+~_)
m-1

If the roots pZ are real and

negative, we can make the
substitution

C'2)- =w (4.76)

W ' Then (4.75) is brought to the
form

n--+

-01W ,, (s+ )0 (4.77)

m-1

cj) <// (<, This element is closed by the
feedback loop with D2(s ),

Figure 4.10. Construction of GPC whose GPC is shown in Fig.
of Guided Vehicle with Several 4.7b and repeated in Fig.
Elastic-Vibration Harmonics. 4.10.

We mark the points with
frequencies 01.' o,2 2,... on this hodograph. Figure 4.10

examines the case in which these frequencies alternate, i.e.,
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o < . 2 ...' (' 3 ... /17 1

We shall convert to the hodograph corresponding to the com-
plete open-loop transfer function

I-- I

n (s2 + 2)

C(s)=q, (s) k, 17, (4.78)
n (s2 + 4,,)

and, finally, estimate stability by steps.

As the first step, we construct the hodograph with only one
of the cofactors in (4.78), i.e.,

C1(s)=D2 (s) k (4.79)s2 + 

(2

This construction has been carried out in Fig. 4.10 and was dis-
cussed previously with the aid of division into the frequency
zones before and after 1. We then mark the points with fre-

quencies wl' 02' ... on the second segment of the hodograph.

On the basis of the criteria considered above, the elastic
vibrations are stabilized in the Cl(s) loop. We now go over to

the loop

C. (S) = C, (s) k22 +2( (4.80)

On the hodograph of C1 (jw), the point with frequency Q2 lies in /174

the lower half of the complex lane; therefore a system with
two elastic-vibration harmonics, having a transfer function of
the form (4.80), is unstable.

But before drawing this conclusion, let us consider a C(' s)

complicated by one of the cofactors in the numerator of the frac-
tion in (4.78), namely:

C (s)= C (s) (s2 + W). ( 4.81)

The additional cofactor moves the hodograph to the coordin-
ate origin, and the segment for frequencies w1 < w < - falls in

the first quadrant, i.e., in the upper half-plane.

Now for the loop with the function

C2(s)= C; (s) k2 (4.82)
S

2 + Q2
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We have prepared the segment of the hodograph indicated in Fig.
4.10 by the dashed line; the point with frequency w = 02 lies
on this segment, and since it is in the upper half-plane, the
second-harmonic vibrations are stabilized.

Thus, the fortunately placed zeroes in the transfer func-
tion of the combined elastic element (4.77), which alternate
with poles of the same function, can preserve the stability of
the controlled vehicle in the presence of elastic structural
vibrations of several harmonics.

The condition for alternation of the zeroes and poles

S < ( < g2 < U) < L)3 (4.83)

which is necessary to ensure stability, conforms rigorously to
the theoretical premises of the gain-phase criterion. Indeed,
each pair of neutral poles in the open-loop transfer function
it is necessary for a stable system that the vector turn through
a positive angle 7 [see formula (4.36)], while an increment n
times larger in the N-vector argument is required for a formula
of the type (4.78), i.e.,

AargN (w)=nn. (4.84)

These increments of the N-vector argument, which are necessary
for stability, are, so to speak, generated automatically by the
discontinuity conditions of the GPC as the N-vector slides /175
along the hodograph from the direction of the positive real
semiaxis to the direction nrg'I.,(i2i) andf rom the direction-- arg(D 2(ij)
to the direction of the positive real semiaxis with observance
of the amplitude conditions of stabilization (4.49) and when
the segment of the hodograph with frequency Gi lies in the up-

per half of the complex plane. And this comes about each time
the hodograph passes through a point with frequency wi, where

the GPC contracts to zero and changes sign.

4.4. CHARACTERISTICS OF LIQUID-LOAD OSCILLATIONS

To take account of oscillations of the liquids in the tanks,
a single generalized input coordinate is introduced for the
oscillatory system; it is denoted in Fig. 4.11 and in the for-
mulas that follow by ri, where i is the number of the tank in

which the oscillations are being investigated.
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TTo eequaionuation
of moments M

'To equation
of forces I

Response Excitation

Figure 4.11. Block Diagram Taking Account of
Liquid Oscillations in the Vehicle's Tanks.

MN. is the dynamic moment coefficient; MM is
q F q

the static-moment coefficient, fF is the
q

dynamic force coefficient, RD is the coef-

ficient for a dynamic input proportional to

the angular acceleration in pitch i:R

is the coefficient for a static input pro-

portional to O .R. is the coefficient for a

dynamic input proportional to the linear ac-
celeration in the vertical plane.

The following coefficients must be assigned for this coord-
inate:

As was indicated in Sec. 2.3, the generalized output coordinate

gik (k is the number of the liquid-oscillation harmonic) satisf-

ies an equation of the form

1= q1r+ & r~ 4 (4.85)

The discussion that follows, which treats certain problems
of the influence of liquid tank loads on the dynamics of the
vehicle,will be based in this chapter on the assigned equation
of the liquid oscillatory system (4.85) and the corresponding
structural diagram, which appears in Fig. 4.11. The center of
this diagram is occupied by the transfer function of the liquid
oscillatory system, which is defined as the ratio of the trans-
forms of the generalized response q(s) and the generalized in-
put r(s), i.e.,
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q (s) (4.86)r (s) Sr + S + 2

The coefficient c at
the first power of s in the

denominator of (4.85) ensures
damping of the oscillations
and is governed by the mutual

+ -2Zs+l friction between liquid par-
ticles, but principally by

the provision of additional
baffles with small perfora-

T2S 1 tions in the tanks. Since

Tqzq this increases weight, damp-
s2+ ing of liquid oscillations

+R is often made the function
of an automatic stabilizing

device. Then the equation
lfl2 of the object itself, if

E = 0 is simplified to

_S22 r Wliq(S) -S2 + Q? (4.87)

where ik is the k-th har-

Figure 4.12. Expanded Longitud- monic frequency of the
inal-Motion Structural Diagram liquid-load oscillations
of Guided Vehicle with Considera- in the i-th tank.
tion of One Harmonic of Liquid-

Load Oscillations. In Fig. 4 .12 , this
element has been made part

of the over-all structural diagram of the vehicle. This diagram

was based on Eqs. (4.3), in which the angle 6 was replaced by

the coordinate 9, which is related to it by =V(t)sinO. For

small increments, we have from AO and AV

Ay = V (t) cos 6 (t) Ae + AV (t) sin 0 (t)= c (t) AO + v(t). ( 4.88)

For the program-assigned values of V(t) and 0(t) about /177

which the controlled process takes place and given. values of

AV(t), the product Vcos0 can be included in the common coef-

ficient c(t), and AV(t)sinO(t) can be replaced by the function.

v(t) as indicated in the right member of (4.88). Thereafter,

c(t) is regarded as an assigned time function, and this func-

tion is "frozen" at specific seconds in the analysis of the

liquid-load oscillations, which are rapid by comparison with

c(t). As an added assigned input, the function v(t) will

henceforth be omitted in the stability analysis. The coef-

ficients in the basic equations are fixed in similar fashion,

and after conversion to the increments the equations can be
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rewritten in operator form:

(T2s' + 27's .+. 1) (s)=(T 2s 1 ) (s)+
+(Mf 's -- MA) q (s) j-M*';

(Tos+ 1)0(s)= aD (s)+fq/s'q (s)+F*; (4.89)

R csG (s)+ (Rs' + R,) 0 (s);
sy (s)= ce (s).

The last equation of system (4.89), which agrees with (4.88)
after elimination of the increment symbol and the disturbance 6,
can be taken into account if interest attaches to a separate in-
vestigation of the behavior of the y-coordinate and can be omit-
ted if, as was done in the right member of the third equation of
(4.89), a conversion is made to the direct dependence of the in-
put on e.

f. b Figure 4.12 repeats
the dynamic structural
diagram for the vehicle's

(s) motion in the vertical
plane as it appeared in
Fig. 4.11, except that
the transfer function

X+_ _ WC(s) has been divided in-

To +1 T0 + to two elements correspond-
ing to the denominator and

S2s_ 4 numerator of the fraction
SR T WC(s). For this reason,

F 2 is indicated in the
diagram after the function

_ I= 1 1/(T0s + 1), and the signal

- S2+5 r is shaped after multi-
Figure 4.13. First Step in Trans- plication by the coeffic-
formation of Structure of Fig. - ient c. The coordinatesformation of Structure of Figy and 6 are the input

disturbances for the
liquid oscillatory element,

and this makes it easy to introduce this element into the
structure under consideration and to apply its response q via
the appropriate coefficients to the adders in the partial struc-
tures based on the equations of moments and forces.

In Fig. 4.13, we have eliminated the force and moment input
disturbances, since we propose to consider only problems of
stability, for which the inputs are omitted in a linear analysis.
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Figure 4.13 is further
simplified by elimination of
the cross couplings present
in the structure. For this
purpose, each term participat-

W2
(s )  ing in formation of the

quantity 6 is also brought
+( to the generalized input

T~r 1T To+ adder r, i.e. the element

eRs
S2 S e is duplicated.

_fT__ Tos + 1

Tso Here the signal 6 will
encounter the element

SacRs on its path to
los + 1

Figure 4.14. Second Step in the adder r. This transfer
Transformation of Structure of function is combined in
Fig. 4.12. Fig. 4.14 with the already

existing coupling between
the same points of the diagram via the element Rs2±R.

(T2s + 1) jFS2
The transfer functions M. s2+M" and ros+ have been

q Tos + 1

combined similarly in the left-hand side of Fig. 4.14 for dia-

gram segment q-M.

After removal of the cross coupling on the q-r segment of

the structure, we are left with the elements. 'oRs which
Tos + 1

are indicated on Fig. 4.14.

After the completed transformations, the liquid oscillatory
element in Fig. 4.14 is found to be bracketed by a feedback loop
which, while complex, has standard element circuit diagrams.
We may therefore plot methods for stability analysis of such a

system. For this purpose, the frequency characteristic W2(jw)

is converted according to the rules set forth in Sec. 3.3.B into
the GPC of a diagram with negative feedback thorugh kf.b, i.e.,

W2(1b) This GPC is multiplied by the GPC of the series-
1 + f.2G (+ bwPw22 2 (

connected elements - M -- * (+j 2 )2 and R-RO
q1 + jo To 1 + joTo

and added to the GPC of the element connected in parallel, i.e.,

147



fFCRro3
q y

- + j,,ro

A complex-plane hodograph is plotted from the general GPC
obtained in this way. Just as in the case of elastic oscilla-
tions, the oscillations in the liquid oscillatory element are
damped if the point with frequency 0 lies on the segment of the
hodograph in the lower half of the complex plane (the case of /
positive feedback) when that element is closed by this feed-
back.

The stability analysis can also be carried out by analytic-
al methods, since we have the complete system of initial equa-
tions (4.89), to which we should either add the autopilot equa-
tion

Mcon= - kf. (4.90)

or simply rewrite an equivalent equation system from the struc-
tural diagram of Fig. 4.12, as the equations of its adders.

-kf.b To consider not only

the first harmonic of the
the liquid-load oscilla-

Ln2;/2 Il;f tions, but also higher

sary to introduce the
appropriate additional
oscillatory elements in-
to the structural diagram

J 5 .of Fig. 4.14, each with
S1 its own frequency 0i and

new coupling coefficients
..... Ri and Mi . Building up

the structural diagramL- to take account of sever-
al liquid-oscillation,
harmonics is a somewhat

Figure 4.15. Expanded Longitudinal- more complicated task
Motion Structural Diagram of Guided than that of building up

Vehicle with Consideration of Sev- the structural diagram

eral Liquid-Load Oscillation for elastic vibrations

Harmonics. as indicated in Fig. 4.11,
since it is necessary to
add a total of 7 elements

and coefficient blocks to the structure according to Fig. 4.11
for each new harmonic. If the already transformed structure in
Fig. 4.14 is used as a base, each new harmonic requires the in-
troduction of four elements.

148



Figure 4.15 shows the development of the structural diagram
for several harmonics.

The structural diagram is built out in exactly the same way
in the, presence of several liquid-filled tanks on the vehicle.
The coupling coefficients obtained are quite different in magni-
tude and sign when the effects of tanks in the nose and tail
sections of the vehicle on stabilization dynamics are considered.

Thus, while a position of the GPC in one half of the com-
plex plane is found to be favorable for stability in the case of
nose-section tanks, it may be necessary to have the GPC in the
other half for tail-section tanks.

In reality, it is necessary to consider three types of oscil- /182
lations simultaneously in the complete dynamic stabilization sys-
tem for a heavy vehicle:

1) oscillations of a vehicle with ideally rigid structure
and "solidified" liquid in the tanks;

2) elastic vibrations of the body in all harmonics that
influence the readings of a gyroscopic instrument;

3) oscillations of the liquid load in all tanks and in a
number of harmonics in each of the tanks.

Despite the complexity of this general case, the methods of
analysis that we have examined above with reference to simpler
examples remain quite effective.

In some case, it is necessary to consider the effects of the
elasticity of the controls and the points of attachment of the
control engines in the vehicle transfer functions in addition to
the factors examined above.

4.5. POSSIBILITIES FOR USE OF EXPANDED STRUCTURAL DIAGRAM OF VE- /183
HICLE AND ANALOG AUTOPILOT FOR DEVIATION AND DISTURBANCE
CONTROL

We shall examine this problem with reference to the vehicle
lateral motion given by Eqs. (2.50). We convert from these
equations to the operator form with standard coefficients:

(Tos+ 1) (s)= a, (s) +F*; (4.91a)

(S7 1 2Ts + 1) (s)=(Ts + 1) 111 s) M*. (4.91b)

where



1
To= , a =l,

2 , n . T (4.92)
I ,2T I \ 2T1 m2== 9

Figure 4.16. Control- Figure 4.17. Expanded Struc-
Loop GPC of American "Saturn" tural Diagram of Lateral-Rocket Booster with Many De- Motion Loop of Vehicle with
grees of Freedom. Automatic Pilot Working on

the Principle of Deviation

Control in Angular and Lin-ear Coordinates.

The right-hand side of the structural diagram is drawn in
accordance with formulas (4.91a) and (4.91b).

Let us consider the case in which there is no disturbing
moment from external factors and M* is developed only by theautomatic pilot. We shall use k to denote the coefficient of

feedback through the automatic pilot in the yaw loop. It is
expressed in terms of the autopilot coefficient, which relates
the deflection of the gyroscope to the deflection of the con-
trol surfaces

AP*, (493)
and the coefficients of the eauation as follows:

kaccordance with formulas (4.9(9a-)4) and (4.91b).

This coefficient has been introduced into the structural

diagram of Fig. 4.17a.
The control deflection also gives rise to a force that is

evaluated by the second term on the right in Eq. (2.yaw loop). After
normalization of the coefficients, which has been done in
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(4.91a), the coupling coefficient between the equations of
forces and moments is replaced by the new coefficient

:q na- zk*', (4.95)

with consideration of the static behavior of the automatic pilot. /184
We shall ignore the dynamics of the automatic pilot in the pre-
sent analysis. The moment M* of Fig. .4.17 also includes addi-
tional components, which are formulated on the left side of the
structural diagram. Let us analyze these components with the
principle of deviation control as our example.

Let the vehicle be acted upon by a (normalized) force F*
that causes a deviation that can be converted into a lateral
velocity by the formula

z=Vv W. (4.96)

The lateral acceleration can be measured by accelerometers
mounted on a gyroscopic platform stabilized in the z-direction,
converted to autopilot signals, integrated, and used to ge-
erate (normalized) moments that compensate the deviation and
are proportional to the velocity (M~.), the coordinate (MI),
etc. For these moments we introduce the transfer functions

MI(s)= -k; IsZ(s)], (4.97)

M; (s) -k [sZ (s)] (4.98)

and indicate the conditions of their generation on the left /185
side of Fig. 4.17. According to deviation control principle,
negative feedbacks are created after measurement of the de-
viation: static feedbacks without integrating elements and
floating feedbacks that contain integrating elements. The
number of integrating elements determines the order of astatism
and the possibility of compensating the constant component of
the disturbance and its varying part.

In the present case, the deviation can be understood as
the lateral velocity

z (i). sZ (s), (4.99)

so that an integrating element is present for it in the moment
feedback.

If the disturbance is constant,F*=F*=consi,its transform

is Ft/s, and we can obtain the steady-state value of the system
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,response z to this disturbance from the formula

z, = lirn FI.7; (s), (4.100)

where W, is the operator transfer constant from the disturbance

to the response S.

This function is determined from the structural diagram in /1l
the form

sV (T.s + 1) (T2s2 + 2ETs +

s (T2 2s + 1 + k ) (T 1)-a' (T+ 1)] +

+ 1 + (4.101)
+ V (kz s + k,) (T2s + 1) a(

the order of astatism is equal to the exponent v of the lowest-

order term in the numerator of the transfer function. In this

case, v = 1,

I1m W; (s)= O,.o s) , (4.102)

and a constant disturbance is fully compensated in the steady

state (t + -). If the disturbance varies at a constant rate

F*(s) = V 0 /s
2 , its compensation requires second-order astatism,

i.e., two integrating elements. With increasing order of the
polynomial describing the disturbance, the necessary order of

astatism, i.e., the necessary number of integrating elements,
increases accordingly.

,. q N02

Figure 4.18. Expanded Structural
Diagram of Vehicle with Minor-Loop
Control and Compensation of Wind
Action on the Basis of the Disturb-
ance-Control Principle.

The transition to the steady state involves long time in-
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tervals (theoretically, t + 0). Treatment of the guided aero-
space vehicle as a stationary system becomes highly approximate
in this case, so that only the tendency toward compensation of
a disturbance can be estimated, while exact calculation natural-
ly requires consideration of nonstationary behavior.

Similar estimates can be made for the other disturbances
operating on the vehicle and in the autcmatic-pilot loop. If
it brackets the point of application of the disturbance, the
negative feedback is the compensating factor for all disturb-
ances in the case of deviation control, but the degree of com-
pensation and even the order of astatism of a given system may
be different for different disturbances.

Let us now consider the possibility of compensation based
on another principle, which is known as the principle of dis-
turbance control. Let a vehicle in the atmosphere be acted
upon by a wind whose velocity is Ww . If the center of pres- /187

sure does not coincide with the center of mass but is aft of
it, it becomes possible to compensate the wind drift by adjust-
ing the characteristics of the vehicle and the automatic pilot.

Let the normalized force and moment from the wind be

= - k,.I , (4.103)

Me= - k. (4. 104 )

We represent the wind action on the structural diagram of
Fig. 4.18, on which we isolate the segment pertaining directly
to the vehicle, eliminating all inputs and introducing only the
disturbances (4.103) and (4.104).

The conditions for full' compensation of the lateral-drift
wind effect reduce to balancing of the forces summed on adder 2.
If the total force F* equals zero, the steady-state response

will also be equal to zero, i.e., the line from F* to T on the

structural diagram can be broken.

The notation for the force-balance equation is extremely
simple:

k =k s2 +2Ts+1+k" (4.105) /188

A content corresponding to the right-hand side of the a-
bove equation must be invested in the coefficient kF to obtain

compensation at-any time. For the steady state (t--oo,s=0) the
balance reduces to the algebraic relation

a,
k,=k l+ k (4.106)
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If the vehicle is unguided, i.e., there is no feedback
through the autopilot and k = 0, the balance of forces will

take an even simpler form:

kF = km.a. ( 4.107)

The physical sense of this relation is that the moment from
the wind turns the body of the vehicle in such a way that the
projection of the thrust P, which appears in the coefficient,
and the lateral aerodynamic force, which is proportional at
small deviations to the angle of attack, compensate the disturb-
ing force of the wind.

Compensation is possible only whenthe center of pressure
is aft of the center of mass; then the nose of the vehicle will
be turned in the direction opposite to the direction of the
wind force, as indicated by the minus sig in (4.104). But
when the disturbing and compensating force s are of opposite
signs, Eq. (4.107) can be satisfied in the presence of variable
parameters at some single point on the trajectory. The situa-
tion is different when the vehicle is automatic-pilot control-
led. It is then necessary to revert to formula (4.106), from
which we obtain

k P (4.108)

The coefficient of the feedback through the autopilot is
shaped by elements of the autopilot system whose gains are
easily adjusted. Then, by varying k in accordance with

(4.108), it is possible to arrive at a condition such that the
forces are compensated at any point on the flight path.
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CHAPTER V

CHARACTERISTICS OF THE VEHICLE AS A NON-
STATIONARY LINEAR OBJECT OF CONTROL

5.1. COEFFICIENT MATRIX FOR DESCRIPTION OF THE LONGITUDINAL MO-

TION OF THE UNGUIDED VEHICLE

The aerospace vehicle must be regarded as a nonstationary
object of control in analyses of the complete dynamic system
with all degrees of freedom, including the loop for the motion

of its center of mass, and in obtaining estimates for large
time intervals, when freezing of the coefficients at their

average levels results in unacceptably large errors.

Let us consider the equations for the longitudinal motion

of arigid'vehicle (2.36). Formally, the conversion to the

standard form of the coefficients (4.4) is made in the same

way as for relation (4.3), but the coefficients for the non-

stationary object of control must be regarded as functions of

time, so that conversion to the Laplace transform becomes dif-

ficult and the result is written in the form of differential
equations:

T0 (t) (t) ()= a (1) 0 () F* (); (5.1)

TW (4) T (t) 20 T, (1) (t) +0 (t)=

= T2 (t)6 () 0 (t) iM* (t). (5.2)

These equations were used to construct-the nonstationary dia-
gram in Fig. 5.1, which is identical in form with Fig. 4.la but

reflects couplings only in the time region. The nonstationary
structure can be used to arrive at an analog model with vari-

able coefficients, but it is not possible to obtain the operat- /190

or transfer function directly. Thus, conversion to the non-

stationary structure and introduction of the coefficient sys-

tem (4.4) add little to our information on the characteristics
of the vehicle as compared to assignment of the initial equa-
tions (2.36).

Conversion to the coefficient system (matrix) correspond-

ing to the equations in the normal Cauchy form is more informa-

tive in this sense.

To convert to this form, a must be eliminated from Eqs.

(2.36), and notation for the coordinates and their derivatives

must be introduduced in the form of the unified system
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o=e o d =02; 8* (5.3)

- We then obtain

T 61L 0110, + b1202 d- 0 ) 0 [t -- 4o] -+ fli-;

0 63= o 1 + , + (t o- ) d It - t,,l;

(5.4)
Figure 5.1. Nonstationary Struc-
ture of Major Loop in Longitud-
inal Control of Unguided Vehicle.

I o i --L -_

1I 0 _
I m o

Figure 5.2. Detailed Nonstationary Matrix Struc-
ture of the Vehicle's Longitudinal-Motion Loop.

where

b1 1=a=- f sin o- s .
V 2m

CZSQV
= a= 2 ; O; b==O; b~2= 1;

b 6SV a(mV+mba); (5.5)
2Jz

ba 2- s'v (m:V- aomb);
2J,

b3 = Qs (m;+ m,.2J
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Equation system (5.4) was used in Fig. 5.2 to obtain a non-
stationary matrix structure that is similar in many structural
respects to Fig. 3.16, but has a more complex, time-dependent
coefficient matrix:

b1 i(1 ) b12 (V) 0 /192

6 (t)(= 0 0 1(56)
(5.6)

b 4 (t) b32(t) b33(t)

We write the matrix equation for the normalized weighting
functions in the form

16 I =I g =I Ig I + 8 t toll. (5.7)

Its solution in the form of the matrixant [9] will be
t t t

Ijgj=E+ I d()ldt + I (t)l d I (t) dt .... (5.8)
to to to

It is convenient to count the time T from the time of ap-
plication of the pulse that excites the weighting function, i.e.,

0=t-to. (5.9)

Then the coefficients of matrix (5.6) can be expanded in Taylor
series around the point t0 in the form

bi(t)=b, (of+')=bik(to)+ i,,k(to)+'bl (fo) - ..., (5.10)

and the matrix itself is written

bl + bin+... bl. +b+ ... b"+b+...

o()== 0 0 1 (5.11)
b4l+bC '+... b32 b 2 +... , +b r+...

The notation of the solution (5.8) changes accordingly, as-
suming the form

I g (E h (r) dd + .s() dv dvt

(T E() "G (T)dv d-v(... 0 (512

The terms of the series (5.12) are determined by the following /193
rules:

1 00

==E= 1 0 (513)

001(5.13)0 0 1
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2 
T2 

221 21 t "21 "

= 0 0 (5.14)

I = 2

F~(,o) F (,to) F13 (lto)

b 3 1T2 b31  b2'2 322 3 
b33r2 - 33T 3  

(5.15)

21 31 2! 31 2! 31

F31 (TIto) F,, (ito) F3 (tIo)

Only the first derivatives of the coefficients were taken
into account in the expansions in (5.14) and (5.15), but it is
quite simple to include the remaining terms in a machine computa-
tion by the procedure considered above.

The relatively simple functions are represented in the matri-
ces in series form, while more complex ones are grouped under
single symbols. For example,

(22(, t.)= [11 (to)+ 1  (to).. b2 (to) + 12 (to) 21 .. "

21/

F12 (C, tO) =( b2 b, ,)  ....

The above matrix analysis of a system with variable parame-
ters makes the closest possible approach to the method con-
sidered in Sec. 3.4 for the investigation of linear stationary
systems, but it is easily seen that the solution depends in the
case of nonstationary systems not only on the current argument
T, but also on the time of pulse application t0 , something

that must be reflected in the notation for the normalized weight-
ing functions in one of the following forms:

KI , to)=gt-to, to)=g(I, to). (5.16)
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In addition, calculation of the matrix series is more com-
plicated for nonstationary than for stationary systems. But
after this procedure is mastered, it is easy to convert from
the normalized weighting functions to the response of the vehicle
to any input disturbance if the disturbance is given in the form
of matrices, some of which appear in Table 111.2, and the matrix
of the process is then combined with matrix (5.11) by the proced-
ure set forth in Sec. 3.7.

Then the response will be computed according to a formula
similar to (5.12), but with more complex matrices. Thus, the
characteristics of the vehicle in composite motion with conSider-
ation of the center-of-mass motion were determined above as
functions of time -variable coefficients or matrices composed of
these coefficients. These matrix relations are expanded with the
aid of the computer.

It is also possible to replace formula (5.12) with a multi-
,plicative integral [9] of the form

Igl=IE+E( )A IE +

+El (T2) aI&1 f+(ts)2 +a, E.(5.17)

where B(Tk) is the coefficient matrix with the coefficient

values fixed at their averages in the interval Ark.

In accordance with (5.17), the calculations reduce to
multiplication:of matrices with coefficient values that change
stepwise as T increases.

5.2. THE MATRIX OF THE BASE WEIGHTING FUNCTIONS OF THE VEHICLE /195

The nonstationary aerospace vehicle can be characterized
by its standard responses. It is sufficient to determine the
responses in the form of weighting functions for subsequent
conversion to other response forms.

For a nonstationary system, the weighting function (5.16),
i.e., the unit-pulse response, depends on two arguments: the
present time and the time of application of the pulse, with the
former replaced in functional notation by its increment T == t - tO. To describe the controlled object itself and for
purposes of subsequent coupling of the vehicle to the controlled
system, it is sufficient in the present case to consider the
following base functions:

W W (t= ,) Wop(,t) (5.18)
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The first indices of
the weighting functions
indicate the position of
the response in the form

IoM  w F of the angular rotation
Sn of the vehicle's velocity

vector e or its axis 6.
The second index indicates-- - o  the point of application

I W*M I hr of the pulse disturbance
Iv- in the form of a moment M

or force F. For subsequent
consideration of real

I disturbances to the as-
Figure 5.3. Matrix of Weighting- signed input functions,
Function Curves for the Non- it will be necessary to
stationary Structure of Fig. 5.1. add the equivalent inputs

that were omitted in the
conversion from the com-

plete weighting-function matrix to the base functions. Transfer
of the inputs from one point of the structural diagram to another
involves a change in the passage of the signal through elements
with variable parameters. If the transfer is forward along the
signal path, the transformations inherent to the skipped elements
are introduced into the input circuit. If the transfer is back-
ward, the inverse operations are included in the input circuit.These rules and nther vices used in structural transformat. ion
of nonstationary systems are discussed in detail in [25].

Figure 5.3 showsthe matrix of the weighting-function curves
corresponding to the aforementioned outputs and inputs for one
of the times of pulse application. The shapes of the curves are
adjusted in accordance with the vehicle's parameters after solu-
tion of the corresponding equations, but the initial segments of /19
the curves can be evaluated qualitatively without detailed solu-
tions.

Thus, only the weighting function wOF will have a step

change in the coordinate (e) at T = 0; the remaining weighting
functions will have zero initial values for the coordinate, and
the function weM will also have one for its first derivative

(the velocity) 6.

On the change in the time of pulse application, there will
be a change in the form of the response in the nonstationary
system. Consequently, it is necessary to have a series of /19
curves for various times in order to assign the properties of
the vehicle as a controlled object. Instead of a catalog of
curves, we can examine a three-dimensional plot of the weight-
ing function as shown, for example, in Fig. 5.4. Here one of
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Wa the sections of the relief cut by

a plane Q perpendicular to the Ot0

axis at a distance t0 from the

q' origin is used for each specific
time of input-pulse application.,
Since the response cannot occur

St before the input (pulse) is applied,

7 F F7/ the line t = t0, i.e., the bisector

of the angle between the coordinate

axes Ot and Ot 0 , serves as the

boundary for the initial segments
of the weighting functions. All

Figure 5.4. Family of Non- weighting functions lie between the

stationary-System Weight- coordinate axis Ot and this bisec-

ing-Function Curves As- tor.
signed in Relief.

If we pass a plane P perpendic-

ular to the Ot axes at a distance

ti from the origin, we can obtain a new relief 
section as shown

on the same figure. Such sections, in which t is fixed and

serves as the parameter while the second argument t0 is varied,

represent the parametric weighting function, whose 
role will be

explained below. The parametric weighting function 
can be continued'

analytically into the region t0 < 0; this device is used in con-

verting to operator representations of nonstationary-system trans-

fer properties.

5.3. NONSTATIONARY STRUCTURE OF THE VEHICLE WITH CONSIDERATION 
OF

CERTAIN CONTROL COUPLINGS

Let- us examine the structure of the nonstationary vehicle

with autopilot feedbacks for lateral motion.

The initial equations (2.50) will then be rewritten

To(i)W+W=a F*, (1

T, (1) + 2t (t) T, (t), = T2(t),+ M* (5.20)

with the standard coefficients

To ( t) =  ;P -1;

Ti=; I= -T1(t n( 2), (5.1
n, t n (t) n (t)
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The nonstationary /i'
structure of the ve-

Shicle itself has been
Me M, i constructed from these

S-equations on the right
side of Fig. 5.5. For

SO analysis of additional
a feedbacks in the later-

i _ al-motion control
S" loop, we add one more

I -- kinematic equation
z I linking the lateral

velocity to the flight-
path rotation angle:Figure 5.5. Nonstationary Structure of

Guided Lateral Motion of Vehicle. *=V()V. (5.22)

These relationships were used to form the structural diagram (seeFig. 5.5), on which a vertical line t appears. To introduce
feedback for the purpose of eliminating lateral drift, it is
necessary to have an instrument that measures the coordinate z or
its derivatives. As we know, self-contained instruments (acceler-
ometers) measure only the acceleration 2 of the vehicle, and theirdesigns may include a converter (integrator) for acquisition ofthe velocity i. Radio devices can also be used for such measure-
ments.

We shall omit the specific properties of the measuring in-
struments from consideration in a general description of the lat-eral-motion control loop, but on converting from the actual lat-eral velocity i to the measured lateral velocity z meas we shall
introduce the measurement-instrument error Am that is inevitable
in a real instrument.

This is reflected analytically by the formula

Zmeas=z+ Am, (5.23)

and on the structural diagram by introduction of an additionaladder to introduce the error A .

The linear coordinate is easily obtained by an additional(instrumental) integration with respect to velocity:

0 (5.24)
If the control system includes a gyroscepic instrument 'thatmeasures the angle or its deviation from the programmed value
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pran instrument that measures the velocity z, and an integra-

tor to obtain the z-coordinate, it is possible to provide auto-
pilot feedbacks in the following generalized coordinates:

- in' angle, -kias;

in lateral velocity k; i

- in the lateral coordinate, -hz.

All of these couplings are shown in Fig. 5.5. The coeffi-
cients' k, k*, and k include the conditions for conversion from

the measurand to the corresponding fraction of the controlling-
moment command and reconcile .their dimensions, reducing them to
the dimensions of the terms in Eqs. (5.2).

The controlling-moment command M* must be distinguished fromc
the actual powered controlling moment M*, and for this purpose

con
two separate vertical lines appear on the structural diagram.
The commands are converted to controlling moments by amplifiers
and actuator devices. We omit all aspects of the conversions,
introducing only a symbol for the the conversion and amplifica-
tion errors, Aa . It appears in the formula

Allo= C-+ , (5.25)

and a separate adder is provided for it in accordance with the
structural diagram.

In analytic form, the complication of the structural dia-
gram reduces to replacement of the total moment in Eq. (5.20)
by the difference between the disturbing and controlling mo-
ments:

/200
M'=M-ist- Mo n  (5.26)

and the. introduction of the following relation for the control-
ling moment:

on = k @ + k; V (t) 7 (t) + k .i V (t) T (t) di. (5.27)

5.4. CHARACTERISTICS OF STATE OF NONSTATIONARY VEHICLE AT A
GIVEN TIME ACCORDING TO ADJOINT EQUATIONS

In analyzing the state of the vehicle on its flightpath,
it is often most important to establish the values of all of
its phase coordinates at characteristic fixed times. For multi-
stage vehicles, for example, it is important to know the state

163



at the time of staging ts; the values of the coordinates at this

time are then used as initial conditions in subsequent calculation
of the dynamics of the separated stage.

A certain amount of preliminary work must be done in order
to determine the conditions of response accumulation as a result
of earlier disturbances of complex form at a given time ts . Let

us first examine the procedure for determining the values of the
weighting function at the same fixed time ts, but with a variable

current time of application of the exciting pulse. If the posi-
tion of the pulse is measured in terms of the so-called "reversed
argument" T* from the time of observation t back to the time of
pulse application, the weighting function at ts will be

" (is, Zt)= g (fi, C) (5.28)

and will be called the parametric normalized weighting function,
in which the time ts serves as a parameter and only the second,

reversed argument T, varies.

In determining the matrix of parametric normalized weighting
functions g (t, ), it is now necessary to use, instead of the ini-
tial equations in the form (5.7), adjoint equations of the form

'(t, )= ( )1Igo. t,T)+ l- 1. (5.29)

The first cofactor on the right in this equation is the /20
transposed coefficient matrix with the reversed argument, i.e.,
a matrix of the form

b1 (t, - ) 0 b3 (ts-t)
*(ts-)= b12 ( P-') 0 b32(ts-) (530)

0 1 b33 (t.-- ) (

where the rows and columns of (5.6) have changed places and the
argument in the coefficients has been replaced by the differ-
ence ts - T, which decreases with increasing T.

Let us now go over to the structure corresponding to Eq.
(5.29) with the adjoint matrix B* (5.30) and the reversed 'coef-
ficients, which is known as the reverse-adjoint (RA) structure
[25].

Its form will depend on the sequence in which the coef-
ficients are arranged in the matrix structural diagram, of
which there are two possible versions.
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Inthe first version,

~ i b, j the coefficient arrangement
-- i given by the transpose

(5.30) must be taken as a

bo 32 l2 basis. Then Eq. (5.29)
S- can be represented graphic-

ally in structural-diagram
ft 2N 3 form. On this diagram
TI (Fig. 5.6), integration is

Sii .. _iN preceded by summing paired /202
_+= products of row elements

II 1 l1 of the coefficient matrix
II "'' Iy+* and column elements of the
L_ weighting-function matrix:

Figure 5.6. Reversed-Adjoint Struc- 
g11 2 g 3

ture Obtained from Transpose of g*l,V)= g21 g 22 -2
Coefficient.Matrix (First Version).

191 :;2 933 (5.31)

To explain the physical significance of each matrix element

of (5.31), assignment of the multidimensional pulse input 
that

appears on the right in (5.29) is indicated separately in Fig. 5.6

for the input of each integrator. With zero initial conditions,

the weighting functions g*ik (i is the number of the output and

k the number of the input) are obtained at the integrator outputs.

Actually, the responses at the outputs are summed over the second

index for disturbances given at all inputs:

g;- g " (5.32)

In the second version, it is necessary to retain the coef- /203

ficient arrangement that corresponds to the initial matrix and

Fig. 5.2; then, to obtain the same solution (5.31), the summa-

tion at the integrator inputs must be carried out with the

column elements of the coefficient matrix rearranged, preferably

as shown in.Fig. 5.7. Here, as in Fig. 5.6, the coefficients

b have been replaced only by their numbers (indices),
ik(t - T)

but the responses at each of the outputs are indicated as summed

over all pulse inputs according to (5.32).

Figures 5.6 and 5.7 illustrate the procedure of obtaining

reverse-adjoint structures for the specific equation system

(5.4) of the vehicle with a relatively small number of couplings

(n = 3 and b 2 1 = b 2 2 
= 0). It is quickly observed that this

method is valid for more complex cases with either higher-order

equation systems or larger numbers of couplings. It is also ap-
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plicable to one-dimensional
systems with a single input
and output that are describ-
ed by a common. differential

_. _ 12 -t equation.

Let it be required to
S123 - 2+ --1 J  < evaluate the characteristics

of a vehicle with respect to
one input F with M = 0 and
one output e on the basis

__ of equation system (5.1)-
(5.2). Then, instead of
the equation system, it is

S 6 -- sufficient to consider a
.-5- -6"- 1 .general equation of the form

9j,+9Fn+O3 _ "O'a, (t)6'+ a, (t) + a,, (f) 0 (t).
(5.33)

Figure 5.7. Reverse-Adjoint Struc-
ture Obtained from Original Coef- equations (5.1) ansformed
ficient Matrix (Second Version). it is necessary to and (5.2),

it is necessary to assume
zero initial conditions

and then, after substituting and eq.ualizing to eliminate the coef-
ficients of the variables a and , to normalize the coefficients
with respect to the highest-order term.

These transformations determine the form of the disturbing
function c. The procedure of contracting the system of equations
with variable parameters to a single equation is made easier by
the method of noncommutative determinants [25].

Introducing the symbol g for the weighting function correspond-
ing to Eq. (5.33), we rewrite it in the Cauchy form:

2=0o 0+g 3; (5.34)
g -- aog-ag 2 -a 293 + t -1 t.

Now the coefficient matrix will be /20

nii P12 i3 0 1 0

[I= 22 23 0 0 1
ai 32 3 0 -a1  (5.35)

31 P32 33 -ao -- a -a

The structure of the nonstationary system corresponding to
Eqs. (5.34) has been developed from this matrix in Fig. 5.8a.
The solution matrix of equation system (5.34) will present the
weighting functions
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Figure 5.8. Detailed Nonstationary
Matrix Structure. a) Equivalent to
one-dimensional nonstationary struc-
ture; b) representing one third-
order equation.

g11 g12 1.. *..... .. g
2 =.. . g (5.36)

g81 Kgs g a ) . .. . g

i.e., the responses at the various outputs (i = 1, 2, 3) to pulses /205
applied at the various inputs (k = 1, 2, 3).

By the formulation of the problem that proceeds from the as-signed equation (5.33Figure), the only unknown is the function gary

= g. The functions g23 = g and g33 = , which are given in the
third column of matrix (5.36), may also be used to evaluate

velocity and acceleration (g-force). The functions in the othercolumns may not be used in the final solution of the problem
(unless a case of nonzero initial conditions is being investgated),
but they will be needed to obtain the basic solutions (g, , ) in
the form of the matrixant. If othe r methods are used in the solu-
tion, all integrators in the structural diagram can be arranged /206s the function

in the same line, as shown in Fig. 5.8b.
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=0,2 -IO

I) a -a

Figure 5.9. Reverse-Adjoint Struc-
ture Obtained from Transposed Coef-ficient Matrix (a) and its One-
Dimensional Equivalent (b).

The diagrams of Figs. 5.8a and b are equivalent, as is easi-
ly seen on tracing the connections between the integrators, which
are indicated by heavier lines, and from the supplementary coupl-
ings via the coefficients.

The conversion to the adjoint equations and structures from
the single initial equation (5.33) will also be made in two ver-
sions.

In the first version, the coefficient matrix is transposedjust as in Fig. 5.6 except that, owing to the absence of a num-
ber of couplings, the structure obtained is somewhat simpler,

as shown in matrix form in Fig. 5.9a and in a form correspondingto the in-line arrangement of the integrators in Fig. 5.9b.

In the second version, the coefficients remain in the same /207
positions as in the original matrix, and the reverse-adjoint
structure of Fig. 5.eq10a is obtained from Fig. 5.8 after removal
of the absent couplings.

If the integrators are arranged in line, the result is the
diagram of Fig. 5.106 exceb. It is quite identical to that of Fig.
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(23)

Figure 5.10. Reverse-Adjoint Struc-ture Obtained from Original Coef-
ficient Matrix (a) (See Fig. 5.3)

and Its One-Dimensional Equivalent

5.9b. Either of these diagrams readily yields the RA equation
inherent to them:

1=0

It is obtained as the sum on the input adder after the necessary
differentiation of the products in the sum, which are disconnect-

ed from the integrator inputs.

For the original vehicle equation (5.33), the correspondingreverse-adjoint equation for determination of the weighting

function takes the form

and Its One-Dimensional Equivalent

[a (t ) g (, -)l (t-. )

1-- [1 (5.38)

The rules for obtaining the reverse-adjoint equations, as
illustrated by (5.37), can be generalized to any order (n) of
the original equation. The rules for deriving the reverse-ad-
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joint strucutre from the initial structure are generalized in
exactly the same way and reduced to the following simple struc-
ture:

- reversal of diagram input and output positions;

- substitution of branch points for adders and vice versa,
with a simultaneous change in the directions of all signals;

- reversal of the argument in the coefficients by conver-
sion to the functions ai(t s - T) instead of ai(t).

Naturally, the rule for formation of the reverse-adjoint
structures from the transposed coefficient matrix can also be
generalized to any order of the equations. Here the pulse must
be applied at the input of the k-th integrator of the diagram
to obtain the parametric weighting function between the k-th
input and the i-th output, in order to satisfy the "starting"
conditions of the diagram:

akk(t, 0)=1. (5.39) /2(

After the parametric weighting function g* has been obtain-
ed, the response of the nonstationary system to an input dis-
turbance x(t) is determined from the convolution formula

Y(tng,*x)=X (T... -T) T, (5.40)

where Tmax is the interval from the start of impression of the in-
put disturbance to the time ts of observation of the accumulated
response. When T reaches the value T max' further integration

stops, since the function x is thereafter equal to zero.

For a concrete equation, e.g., (5.33), the parametric weight-
ing function g*e¢(t, T) must be substituted into (5.40). If the
assigned equation contains derivatives or variable coefficients
in its right member, the parametric weighting function is denoted
by w*(t, T) and determined by the procedure set forthin [25], and
Eq. (5.40) is witten in the more general form

Y (11m,.a)=x ' w' (t,T) x (T, -- ) d . (5.41)

5.5. OPERATOR FORM OF ASSIGNMENT OF THE VEHICLE'S NONSTATIONARY
CHARACTERISTICS

The convolution equation (5.41) can be Laplace-transformed:
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SUMMARY OF VARIOUS METHODS OF ASSIGNING AND USING CHNRAC-ERIS-T 1CS.

OF NONSTATIONARY FLIGHT VEHICLE

Flight vehicle Characteristics Intermediate Response

characteristics of input solution

I. Coefficient Standard-input Combined coef- In form suitable

matrix of equations matrix according to ficient matrix for computer input

in normal Cauchy Table IV.2 or multiplicative

form integral (5.17)

II. Parametric Analytic form of. Convolution Tabulated re-

base weighting assignment with con- formula (5.41) suits of integra-

functions: sideration of time tion by convolu-
tion formula for

- in form of shift various t

table for various
X or as relief of

the function (Fig.
5.4)

III. Transpose Diagonal unit- Adjoint Parametric nor-

of coefficient pulse matrix structure malized detailed
weighting functions

matrix with argu- assigned for II

ment reversed

IV. Parametric Laplace transform Parametric Inverse Laplace

transfer functions without considera- transform of (5.45) or Fourier

tion of time shift response; for- transformation by
mula (5.42) methods set forth

in Chap. III



Y* (t,s)=W* (ts) X*(s), (5.42)

where

W* (ts)= w' *(,t,r)e-'" d, (5.43)
0

X* (s) x(rm)e-'m'dm. (5.44)

In (5.43), the'Laplace transformations are carried out with re-
spect to the second argument with the parameter t = ts, and the /20
transform (5.43) is known as the parametric operator transfer
function.

The result (5.42) is called the parametric transform of theresponse Y at time t = ts to an input disturbance of specified
shape x and arbitrary time shift. The inverse Laplace transform
of the parametric response transform, i.e., the original at pointt

L- [Y* (t, s)] =y* (f, "r,), (5.45)

covers all possible intervals (Tm = var) of action of a disturb-
ance of the specified form on the system.

Thus, the conditions for transfer of the disturbance from theinput to the output of the nonstationary system are described by
the simple formula (5.42), in which the parametric transfer func-tion and the transform of the unshifted disturbance are multiplied.
Thus, although the answer to (5.42) is obtained for a fixed timet = s the characteristic of the nonstationary systemis given in
terms of its parametric function.

Let us illustrate the derivation of the parametric transfer
function with reference to transformation of Eq. (5.33) as an
example. If its right-hand side ,(t) is regarded as a unit input,then according to [26] the parametric transfer function can be de-
termined by successive approximations. The first approximation
takes the form

S3 + (s - ) 2 a () + (s- a) a (t) + ao ((5.46)
1 (5.46)

S3 + a 2 (t) S2 +[a 1 (t) - 2 2 (t)] + at)-ao - (t) + a2 (t)

where 3 = d/dt is the algebraized differentiation symbol.

Since the coefficients in the parametric transfer function
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become numbers when t5 is fixed, the inverse Laplace transforma-

tion is carried out in the same way as for stationary systems by

the methods set forth in Chap. III.

The table presents a summary of the characteristics that 
can

be used to specify a nonstationary vehicle for subsequent 
analy-

ses as an object of control.
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APPEND IXES /21

Appendix I

COEFFICIENTS IN EQUATIONS OF MOTION AND TRANSFER FUNCTION
OF THE F-101 AIRPLANE AS FUNCTIONS OF FLIGHT SPEED

AND ALTITUDE

0~2JC-- 7 hd

S0 0

0,2 0.6 1.0 1 8 m

a)

,aL ne/

80
60l

0 #=6000m

"0/ / ,# / : -- I

0.2 0.6 7.0 19 7.8 m

b)

Figure I.1. Coefficients of Equations
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,o 1/c

.0 - -Z-# - -

.0 - 2.6

3.0 - 7,2 73500

--- 6000

0.2 0.6 o0 , .8 m

a)

T2 Ci- r' -42

1.0-t _ --

\ \ #=0

6000

0 t=O " 6000

02 0.6 10 I* 8 m
b)

Figure 1.2. Coefficients of Transfer
Func t ions.
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Appendix II

TRANSFER-FUNCTION COEFFICIENTS OF V-2 BALLISTIC MISSILE AS
FUNCTIONS OF TIME OF FLIGHT

2 &2

0 10 20 JO i0 50 60 tc

a)

K oo

100

0
10 30 0 50 60 tc

-300,

b)

Figure II.1. Transfer-Function Coef-
ficientso.f Ballistic Missile as
Functions of Time of Flight
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Appendix III

TABLES OF STANDARD AEROSPACE VEHICLE TRANSFER FUNCTIONS

Table III.1

TRANSFER FUNCTIONS OF THE VEHICLE IN THE LONGITUD-
INAL PLANE

Transfer-function notation Form of transfer function

S . l(S) S e  as e

H (s) W f(s)= Z S2+a c 14-

e(s) a a s 2 1 a/ aIe IJ

t bt (s) I as a.a

W1 (S) S)- (s) C + *C31 ( - )i

Vv(s) W (s) a -- 23 C13 C3  4 C14 )
(s) e as a.

o b (s) 1 (Ce
( e (s) (s) eA a5  e a5

II



TABLE II. 1, (CONT'D.)

Transfer-function notation Form of transfer function

Without consideration of

gravity component (lev- z e

Wa (S)e be (sae- e3- 3 23 +. CI.
where

A S3 + (C- C 23) s2 - (CIIC3 + ; 1 C13 + C 4C3 3 + 4 C31) S -

- 4 (C33 1 + C13C31).- C 4 (C c133- 31C23)

With consideration of gravity
component (Z& c O0)

W e = S e(S ) *ze*s2+ ee (S)e eJO (s)
We(s) We (s) ==-a .e'S2.  (nBrze-n+ .s n Be s e])

0 be (s)
s we (S) W88 (S) "[Za2e-2 .

0: .n(s__ [, (z' + TO)+

c. S.Q.V2+2P

W (s) Y (s) = k , (s); k. - 2
S mg =. (s) )g , +m-

be (S) where AS+ n + z, + n )s + (Znf + n, - nf )S - gn,

w A
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TABLE 111. 1, (CONT'D.)

Transfer-function notation Form of transfer function

consideration of z z s + Z- +vi component (lev- () e e e k (Ts + 1)
el flight) (z = 0) e A A

where
a (s)

W (s) e() k- e-ne ; 1-
z,,n + n, nz&e - ne

W (s (s) ) s (n + ze-n.) s + neze + n; z k (Ts + 1)

WO (s) - e () sA
4e bee

a nqZ +fn *Z& 
n +Z, -.n,where k e ; T 1  _ _ _

zn, + nn + n; z e _



(TABLE III. 1, (CONT'D)

Transfer-function Form of transfer lunction
notaton

"W 5 (2 -(s)-S)Z T n e ,  S2+2iTis+1
-a sA A*s

We (s) = n(s) ;+n. z e _________
whereiik ; T i =

znr + n nz + n z

(n + _ 8,e
2 n, z + n, ze

W (s) = k,

where A = s2 + n, + + n ) s + zn , + na;

w am) ny (s)

A*=T22s 2
U2 T 2s + 1; T2=1

zn ,t + no

n, + z, + n.
C2

2 /Zon + n.

i

cra

21Zflrl



TABLE III. 2

TRANSFER FUNCTIONS OF THE VEHICLE IN LATERAL MOTION

Transfer-function Coefficients of polynomial A3s3 + A -s
2 + A + A0 in numerator

notation I . of transfer function

1 W (s) S)
r, b r(). A2 = ao0lr+ n6,r+ (n, + I ) z,_

A - (z, + nvf+ aonr) 1 r+ (aolr + l4,t- z. tg 0o) n+ (len, - nlr) za

Ao0 = z [(Ir - lttg o) nr+ (nr - np tg 80) 16l

A 3 = 18

2 W'~ (s) (s)
ar 4(s) A2 = za(lp - In ) -+(zp nr+ "n ) 1iIlrnri

A = (lpnr - nlr)z,,+ (ng +fnrZz - z.n tg8 0)It+(Ilp + lrzp) n l;

Ao = - z tg 80 (ng~l  Ig'i).

I I



TABLE III. 2, (CONT'D.)

Transfer-function Coefficients of polynomial A30 + A2s2 + AIS + Ao in munerator
notation -of transfer function

ua (S) As = ng - 4nj ;
3 W s (s) --- (s

'b 8y(s)
A 2 = nkR(zp + 't) + l~ (n,- aon. )- za.(n it + n);

A, = n -(zpli- lolp) + 1 (ftyp - aonp - zn )- z&,r(nIt- nI);

Ao = - (nr; lp + 1r; np) Zr

AS 2= (r- zain tg 80 - n. tg 8o);

W (s)- (s) A=18 (zp+nr+n +tgbo(a n-ny)] + z6(l-,n )+

+ tg 8 (tp + n)] + ng)+ ngl, - tg 8o (zp + 4)];

Ao 1 ,w[(zpR n, + n,) + tg 80 (o0ng - npip)] + zr([lpfnr - Irp -

- tg Yo (ln -+ ngl)] + n, [zpl, + I + tg 80 (ao4l - zl/e)].

co
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TABLE III. 2, (CONT'D.)

Transfer-function Coefficients of polynomial A 3sa + A 2s
2 + Als + Ao in numerator

notation of transfer function

W (s) A 2 = n + a01
5 W (s) a

5 (s) A 1 = n& (aol, + t-- z tg 0 ) + laaaonr + ny+ z,);

AO = z, [n (l, - 1tg 00) + Ia(nr - n tg 00) ].

6 Wx( (s)
N6 ba(s) A 2 = 18.(zp + ( , + n,+ ) + I,n 8

A1 = I4(p + nrzp -- z np tg eo)+ nI(UP + rzp);

AO = -z tg0o (nly I gQ.

7 Wu (S) Y (s)W 3 ( s)d
14 ba(s) A 2 = n(p + I) (ny- an)

A1 = nl zlP- lao) + q (nlY2z - aong - z .rn );

A0 = -', (n8,I + lan).



TABLE 111. 2, (CONT'D.)

Transfer-function Coefficients of polynomial A 3s
3 + A 2s2 + A 1s + Ao in numerator

notation of transfer function

AS= 1,1 _n8tg o;

8 yyS) (S)
8 \ W(s ) A( = s,).zp + nr + I( + tg (aon- ny)] + t na - tg 8o (zp + It)l;

Ao= a[(zpnr + np) + tg o0 (aonp - nyz,)] + nl[zplr +

+ 0 + tg 80 (aolo - -p 1)]

B3 It,+ nr +Irp + niCoefficients ofpolyno- BaI+ n, + +

+Bj +Bo=A in den- B = Itnr - nrl, + zp (It + nr) - ao (Irnp - 1p) + (It- + n) - ln tg o;

tor of transfer function
B1 = ;p (Itnr - n/r) + a0 (lrnp - Ipnr) + (npti- lny) +

+ zy [Irn b - 1p - tg o0 ('t,n + np)];

Bo = z7 [(l,n r - lonr + tg R (Iny- np~t)



TABLE H. 3

SIMPLIFIED VEHICLE TRANSFER FUNCTIONS IN LATERAL MOTION

Transfer-function
notation Fcrm of transfer function

x (S) ) where 2 --
af > s))\ s + "I Tjs+1 l e It

SI) (s) (s s (s

Ir:

() (s) S2 + nes + ap T;2 +2 2O + 1

S(s) (S) s+

U where\ k= '- T; T2 E2-2jn. 2=1/-;



TABLE III. 3, (CONT'D.)

Transfer-functionnoTransfetion Form of transfer function

WW (s) W ) = .s [S2 +(z +nr)s+(ng + nrzp - zpng)
S(s) z(s

a 8 (s) nal
a ) a (S) Y(S)

w +(s= x(s) 1 8a7+ Ina nfr s + nfli - Ipn

W (S) () w(s (S)

(s) (- (S) W (s ) = r ,e A ,, (s) ar A

Swhere A = s + (nr + 1t) s2 + (np - Itnr + nptr) s + 4P - no .

0,-.I
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Appendix IV

TABLES OF BASIC CHARACTERISTICS OF VEHICLE'S ANGULAR MOTION AS A FUNCTION
OF DISTURBANCE

TABLE IV. 1

RESPONSE OF VEHICLE IN ANGULAR MOTION AS A FUNCTION OF THE TYPE OF
DISTURBING MOMENT AND THE POLES OF THE TRANSFER FUNCTION

k
Inw t  Nature of poles of transfer function W (s) -

disturbance T2s2 + 2Ts + 1
Real

1 1I ( - e + V 2 - 1); pi = + i E- + 1 ) > 0;T 0T
1 1

x (s)- (t)2 (-- 2 - - 2 + 1 ) < 0;T T

I 1E>1 E> O; T= -- T -

k k

T2 (S - )(s - 2) ((1s - 1) (T2s + 1)

k- kT T, T2
27 2- 1 s -1 - s P2 2 Ts - 1 TZs- 1



TABLE IV. 1, (CONT'D.)

Input Nature of poles of transfer function W K (s) =
disturbance s Ts

Real

T t

k
exp (- - exp(- + Y . +)-

T T

2T /E2 - 1 2T It]-

+ 2(1 E2- Ef -E- ) 2(1 + E+2 Ejr ,i)

I e i [ 2] ( +

-e expxp(- t + _expt -

T T

1I-2 + 2E1q+ 212 + 2( 2

00

M+



TABLE IV. 1, (CONT'D.)

k
Input Nature of poles of transfer function W (s) =

disturbance T2s2 + 2Ts + 1

Real

+r - e + V2 -I)>o;
T T

x(s)- x (t) I2 -( - - ~2 + 1 )<o;
T T

1 1
e>1 > O; T T2

I_ IP21

kv I exp P t exp P2t kvt (exp P1t exp t
2T Y2 - 1 "  p (o2T 2 + 1 ' I +

vl
• - 0 v v -21 " *-os+1+ vIVy' (O)t- + v(v1) "()t' + + (s)

+ ... +W'(O)

___________T k-I " ~ 2T/ --k (X (8P) exp pIt - X (p2) exp 2t] + 2T i [X (PI) exp Pt - X (P2) exp P2t] +

7" (0) .. Y(t) (0) )
S+ () x () + W' () x (t) + ! x (t) + + (I)

21 !



TABLE IV. 1, (CONT'D.)

k

Input Nature of poles of transfer function ]7 (s) + T2 + 2WTs + 1

disturbance i Re_

kwI e xp p exp + ki expP It exp P t

" jr ,s7e2_ -je-1 P +.2 - + .2 ) 2T f2 +1 2+.-

s2+,(2 ' ImW (jw)
(, ) + IW (j) I sin t + arce Ig Re W (j) -D

-- sin t - --

(- 1)' X k U(p,)exp k U( exp

S2 1 l p + )2 + w21'+- 2T +I ( .)? + -2'

(s+a)2+U2 (V2)exp2t -U (P2) expXP 2

U,(s) p2 + 0)2 + 12' [2 + o)2 +

Ssl v 2( (s2) exp w i +U , (s) = 2(s + a) -l

U2 (s)=2 [3 (s +

+q)2-2]

Us (s) = 24 (s +

+0)[(s+o)2-o,2]

NHIX

H-



TABLE IV. 1, (CONT'D.)

Input Nature of poles of transfer function w (s) k

disturbance T2s2 + 2ETs + 1
Real

1 1" 

X 1x

Px (t) 2 (E2 ) < T
- . zexp (1-/ 27:!:

z exp (Z-- (I) 2
z-exp ( + z-

ZeA +E1-



TABLE IV. 1, (CONT'D.)

Input Nature of poles of transfer function W (s) T + 1
disturbance 

T2s2 2Ts +

-Complex I Imaginary

S1ix (S)--x (t) V* j -je

O<E< 1 E=o; =-

k k 1 kQ2
Im - k! Im

T2s2 + 2Ts + 1- TI 1- 2 2 - jQ

exp ( - )sin -L/1-- sin kQsin 9

T - 2

exp - 5
1 1 1- X

'As '  1/- 2 I - cos 21s R
X sin - + are cosE

LL7



TABLE IV. 1, (CONT'D.)

k
Input Nature of poles of transfer function W(s) -

disturbance T2s 2 + 2Ts + 1
Complex I Imaginary

1 e_ _ +.j E); -ja
T

x (s) --- x (t)-- jY--. -t " _d2;

T

O<E<l E=O; Q=-

I/k exp (-- 2expIt

1 /(1- 2)(T21q2 + 2ET +cs 1) 2+/

S+z ~ T exp t - --- sin ot + arc cosQ
+ arcCos -qi+2 2+92

T22 + 2T-T + 1) T22 + 2T -

k(--l)' vl T exp - (-)'+V I v)
f-2 ' -sin[ - / - - - + s o +v- +V1 IT + 2 ]

S+ (l)() ()(t) vi W'( ()t'-,
+ (v + 1) arc cos e] + Wv()(O) (')()

1-0

I.



TABLE IV. 1, (CONT'D.)

Input Nature of poles of transfer function W(s)= T 2Ts

disturbance
Complex Imnaginary

11%1 kJA .P)lexp - ____1

"-sin [ 2 + ko IX(j2)] sin [t-arctg )+

Im x (P) ]
_ + arc tg +

Ile X (P)

S W-(o) w(-') (0)
S+W(O) x() + '(O) ()+---x()+ . . . + xe

"1 :e

kW exp -

S +
2  "sint )1[1 + 2(2$2 - 1)a 2T 2 -+- 4T4(1- 2) 2+2 sin sin

Xsin -- -- 2 + arc tg 2 --
T o22 + 2E

2 
- I -1

1 Im 
7 (j 

)

- sin 9 -

+Q2  I 2( sin f-t t2 cos ft)

HD
U,



TABLE IV. 1, (CONT'D.)

k
Input Nature of poles of transfer function W(s)

disturbance T2s2 + 2Ts + 1
Complex -- Imaginary,

1O<

E=O o; 2 1
f T

(- 1)' X
T /It-(I exp - - sin ti- + kQ Ix(jQ)I sin [t +

(s + a)2+w2 ImX(P) Im X ()OU,(s) + arc tg -+ +arctg i +Re X () ) Re X (j2)
I(s+c)2+,o'* v

" t' e-  sin wt.
Us(s)=1 2i exp( -- at) {r [( 0 \ jU(a)W(a). a= -a+jo+ Im exp(jIt) t + + +

U(s) =2(s + a) vi a I V+' a= 2 }
U2 (S) =

==2[3(s+U)2- 2]

Us(s)=24(s+o) X
X [(s + C)2 - 021

I



TABLE IV. 1, (CONT'D.)

k
Input " Nature of poles of transfer function W( s) T2 + 2 Ts + 1

disturbance
Complex - -- I - Imaginary

exp ( - 1) T

_I-x() X [Z] k - T2 x x .[z]k 1 +

z2sin (1- )---- (2- arccos cos (zxTo)-z2 cos T -1(- ToJ

Xz[- 2z cos QTo + I

Z2-2zexp (-L-e cos -l--E2+T T

-zexp -o ex sin1 y +arc os )

z--1
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TABLE IV. 2

CONDITIONS OF MATRIX-FORM REPRODUCTION OF INPUTS IN THE FORM OF ASSIGNED FUNC-
TIONS THAT ARE SOLUTIONS OF SECOND-ORDER DIFFERENTIAL EQUATIONS

CoefficientmatCoefficientx Initial values Nornalized-weigting-function matrix
Assigned function

633 b34  1gi) LIM

_43 _64_ I g21t g I

Vt + C* I [t) 0
0 01 0 it)

Be" ] C [0 0 1  l+ -C ell, - -

S0 e5

r



TABLE IV. 2, (CONT'D.)

Coefficient Initial values Normalized-weighting-function matrix
matrix

Assigned function I
63 b34 +(0+ (0+) gl+ 1 1

b43 b Ig 21 g22

Be'r Celt 0 1 + qB + OC 0 e t) i - et

1
0 1 cos Qt sin Qt

A sin (Qt +) 2 0 Asin AQ cos
- sin Qt cos Q1

cos Qt sin i - sin it
0 1 1 St

Ae' sin (°+) -+) I 241s Asiny AQ cosy+Alsiny j2Q2
- sin t cos ct+ - sin tAci in( t 1 ( 2+ 9) 1 2+ Q i W c s9 + sn9
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